Documentation

Mathlib.Analysis.SpecialFunctions.MulExpNegMulSq

Definition of mulExpNegMulSq and properties #

mulExpNegMulSq is the mapping fun (ε : ℝ) (x : ℝ) => x * Real.exp (- (ε * x * x)). By composition, it can be used to transform a function g : E → ℝ into a bounded function mulExpNegMulSq ε ∘ g : E → ℝ = fun x => g x * Real.exp (-ε * g x * g x) with useful boundedness and convergence properties.

Main Properties #

Definition and properties of fun x => x * Real.exp (- (ε * x * x)) #

noncomputable def Real.mulExpNegMulSq (ε x : ) :

Mapping fun ε x => x * Real.exp (- (ε * x * x)). By composition, it can be used to transform functions into bounded functions.

Equations
    Instances For
      theorem Real.mulExpNegSq_apply (ε x : ) :
      ε.mulExpNegMulSq x = x * exp (-(ε * x * x))
      theorem Continuous.mulExpNegMulSq {ε : } {α : Type u_1} [TopologicalSpace α] {f : α} (hf : Continuous f) :
      Continuous fun (x : α) => ε.mulExpNegMulSq (f x)
      theorem Real.hasDerivAt_mulExpNegMulSq {ε : } (y : ) :
      HasDerivAt ε.mulExpNegMulSq (exp (-(ε * y * y)) + y * (exp (-(ε * y * y)) * (-2 * ε * y))) y
      theorem Real.deriv_mulExpNegMulSq {ε : } (y : ) :
      deriv ε.mulExpNegMulSq y = exp (-(ε * y * y)) + y * (exp (-(ε * y * y)) * (-2 * ε * y))

      For fixed ε > 0, the mapping mulExpNegMulSq ε is Lipschitz with constant 1

      theorem Real.abs_mulExpNegMulSq_le {ε : } ( : 0 < ε) {x : } :

      For fixed ε > 0, the mapping x ↦ mulExpNegMulSq ε x is bounded by `(√ε)⁻¹

      theorem Real.dist_mulExpNegMulSq_le_two_mul_sqrt {ε : } ( : 0 < ε) (x y : ) :
      theorem Real.dist_mulExpNegMulSq_le_dist {ε : } ( : 0 < ε) {x y : } :
      theorem Real.tendsto_mulExpNegMulSq {x : } :
      Filter.Tendsto (fun (ε : ) => ε.mulExpNegMulSq x) (nhds 0) (nhds x)

      For fixed x : ℝ, the mapping mulExpNegMulSq ε x converges pointwise to x as ε → 0

      theorem Real.abs_mulExpNegMulSq_comp_le_norm {ε : } {E : Type u_1} [TopologicalSpace E] {x : E} (g : BoundedContinuousFunction E ) ( : 0 ε) :

      For a fixed bounded function g, mulExpNegMulSq ε ∘ g is bounded by norm g, uniformly in ε ≥ 0.