Actions as functors and as categories #
From a multiplicative action M ↻ X, we can construct a functor from M to the category of
types, mapping the single object of M to X and an element m : M
to map X → X
given by
multiplication by m
.
This functor induces a category structure on X -- a special case of the category of elements.
A morphism x ⟶ y
in this category is simply a scalar m : M
such that m • x = y
. In the case
where M is a group, this category is a groupoid -- the action groupoid.
A multiplicative action M ↻ X viewed as a functor mapping the single object of M to X
and an element m : M
to the map X → X
given by multiplication by m
.
Equations
Instances For
A multiplicative action M ↻ X induces a category structure on X, where a morphism from x to y is a scalar taking x to y. Due to implementation details, the object type of this category is not equal to X, but is in bijection with X.
Equations
Instances For
Equations
The projection from the action category to the monoid, mapping a morphism to its label.
Equations
Instances For
The canonical map ActionCategory M X → X
. It is given by fun x => x.snd
, but
has a more explicit type.
Equations
Instances For
Equations
An object of the action category given by M ↻ X corresponds to an element of X.
Equations
Instances For
Equations
The stabilizer of a point is isomorphic to the endomorphism monoid at the corresponding point. In fact they are definitionally equivalent.
Equations
Instances For
Equations
Any morphism in the action groupoid is given by some pair.
Equations
Instances For
Given G
acting on X
, a functor from the corresponding action groupoid to a group H
can be curried to a group homomorphism G →* (X → H) ⋊ G
.
Equations
Instances For
Given G
acting on X
, a group homomorphism φ : G →* (X → H) ⋊ G
can be uncurried to
a functor from the action groupoid to H
, provided that φ g = (_, g)
for all g
.