Constructors for Action V G
for some concrete categories #
We construct Action (Type*) G
from a [MulAction G X]
instance and give some applications.
@[simp]
theorem
Action.ofMulAction_apply
{G : Type u_1}
{H : Type u_2}
[Monoid G]
[MulAction G H]
(g : G)
(x : H)
:
def
Action.ofMulActionLimitCone
{ι : Type v}
(G : Type (max v u))
[Monoid G]
(F : ι → Type (max v u))
[(i : ι) → MulAction G (F i)]
:
CategoryTheory.Limits.LimitCone (CategoryTheory.Discrete.functor fun (i : ι) => ofMulAction G (F i))
Given a family F
of types with G
-actions, this is the limit cone demonstrating that the
product of F
as types is a product in the category of G
-sets.
Equations
Instances For
instance
Action.FintypeCat.instMulActionCarrierOf
(G : Type u_1)
(X : Type u_2)
[Monoid G]
[MulAction G X]
[Fintype X]
:
MulAction G (FintypeCat.of X).carrier
If X
is a type with [Fintype X]
and G
acts on X
, then G
also acts on
FintypeCat.of X
.
Equations
def
Action.FintypeCat.ofMulAction
(G : Type u_1)
(H : FintypeCat)
[Monoid G]
[MulAction G H.carrier]
:
Bundles a finite type H
with a multiplicative action of G
as an Action
.
Equations
Instances For
@[simp]
theorem
Action.FintypeCat.ofMulAction_apply
{G : Type u_1}
{H : FintypeCat}
[Monoid G]
[MulAction G H.carrier]
(g : G)
(x : H.carrier)
:
Shorthand notation for the quotient of G
by H
as a finite G
-set.
Equations
Instances For
instance
Action.instMulAction
{V : Type (u + 1)}
[CategoryTheory.LargeCategory V]
{FV : V → V → Type u_1}
{CV : V → Type u_2}
[(X Y : V) → FunLike (FV X Y) (CV X) (CV Y)]
[CategoryTheory.ConcreteCategory V FV]
{G : Type u_3}
[Monoid G]
(X : Action V G)
:
Equations
instance
Action.instMulActionCarrierVFintypeCat
{G : Type u_3}
[Monoid G]
(X : Action FintypeCat G)
: