Documentation

Mathlib.CategoryTheory.Adjunction.Evaluation

Adjunctions involving evaluation #

We show that evaluation of functors have adjoints, given the existence of (co)products.

The left adjoint of evaluation.

Equations
    Instances For
      @[simp]
      theorem CategoryTheory.evaluationLeftAdjoint_obj_map {C : Type u₁} [Category.{v₁, u₁} C] (D : Type u₂) [Category.{v₂, u₂} D] [∀ (a b : C), Limits.HasCoproductsOfShape (a b) D] (c : C) (d : D) {X✝ Y✝ : C} (f : X✝ Y✝) :
      ((evaluationLeftAdjoint D c).obj d).map f = Limits.Sigma.desc fun (g : c X✝) => Limits.Sigma.ι (fun (x : c Y✝) => d) (CategoryStruct.comp g f)
      @[simp]
      theorem CategoryTheory.evaluationLeftAdjoint_map_app {C : Type u₁} [Category.{v₁, u₁} C] (D : Type u₂) [Category.{v₂, u₂} D] [∀ (a b : C), Limits.HasCoproductsOfShape (a b) D] (c : C) {x✝ d₂ : D} (f : x✝ d₂) (x✝¹ : C) :
      ((evaluationLeftAdjoint D c).map f).app x✝¹ = Limits.Sigma.desc fun (h : c x✝¹) => CategoryStruct.comp f (Limits.Sigma.ι (fun (x : c x✝¹) => d₂) h)
      @[simp]
      theorem CategoryTheory.evaluationLeftAdjoint_obj_obj {C : Type u₁} [Category.{v₁, u₁} C] (D : Type u₂) [Category.{v₂, u₂} D] [∀ (a b : C), Limits.HasCoproductsOfShape (a b) D] (c : C) (d : D) (t : C) :
      ((evaluationLeftAdjoint D c).obj d).obj t = fun (x : c t) => d

      The adjunction showing that evaluation is a right adjoint.

      Equations
        Instances For
          @[simp]
          theorem CategoryTheory.evaluationAdjunctionRight_counit_app_app {C : Type u₁} [Category.{v₁, u₁} C] (D : Type u₂) [Category.{v₂, u₂} D] [∀ (a b : C), Limits.HasCoproductsOfShape (a b) D] (c : C) (Y : Functor C D) (x✝ : C) :
          ((evaluationAdjunctionRight D c).counit.app Y).app x✝ = Limits.Sigma.desc fun (h : c x✝) => Y.map h
          theorem CategoryTheory.NatTrans.mono_iff_mono_app' {C : Type u₁} [Category.{v₁, u₁} C] (D : Type u₂) [Category.{v₂, u₂} D] [∀ (a b : C), Limits.HasCoproductsOfShape (a b) D] {F G : Functor C D} (η : F G) :
          Mono η ∀ (c : C), Mono (η.app c)

          See also the file CategoryTheory.Limits.FunctorCategory.EpiMono for a similar result under a HasPullbacks assumption.

          The right adjoint of evaluation.

          Equations
            Instances For
              @[simp]
              theorem CategoryTheory.evaluationRightAdjoint_map_app {C : Type u₁} [Category.{v₁, u₁} C] (D : Type u₂) [Category.{v₂, u₂} D] [∀ (a b : C), Limits.HasProductsOfShape (a b) D] (c : C) {X✝ Y✝ : D} (f : X✝ Y✝) (x✝ : C) :
              ((evaluationRightAdjoint D c).map f).app x✝ = Limits.Pi.lift fun (g : x✝ c) => CategoryStruct.comp (Limits.Pi.π (fun (x : x✝ c) => X✝) g) f
              @[simp]
              theorem CategoryTheory.evaluationRightAdjoint_obj_map {C : Type u₁} [Category.{v₁, u₁} C] (D : Type u₂) [Category.{v₂, u₂} D] [∀ (a b : C), Limits.HasProductsOfShape (a b) D] (c : C) (d : D) {X✝ Y✝ : C} (f : X✝ Y✝) :
              ((evaluationRightAdjoint D c).obj d).map f = Limits.Pi.lift fun (g : Y✝ c) => Limits.Pi.π (fun (x : X✝ c) => d) (CategoryStruct.comp f g)
              @[simp]
              theorem CategoryTheory.evaluationRightAdjoint_obj_obj {C : Type u₁} [Category.{v₁, u₁} C] (D : Type u₂) [Category.{v₂, u₂} D] [∀ (a b : C), Limits.HasProductsOfShape (a b) D] (c : C) (d : D) (t : C) :
              ((evaluationRightAdjoint D c).obj d).obj t = ∏ᶜ fun (x : t c) => d

              The adjunction showing that evaluation is a left adjoint.

              Equations
                Instances For
                  @[simp]
                  @[simp]
                  theorem CategoryTheory.evaluationAdjunctionLeft_unit_app_app {C : Type u₁} [Category.{v₁, u₁} C] (D : Type u₂) [Category.{v₂, u₂} D] [∀ (a b : C), Limits.HasProductsOfShape (a b) D] (c : C) (X : Functor C D) (x✝ : C) :
                  ((evaluationAdjunctionLeft D c).unit.app X).app x✝ = Limits.Pi.lift fun (g : x✝ c) => X.map g
                  theorem CategoryTheory.NatTrans.epi_iff_epi_app' {C : Type u₁} [Category.{v₁, u₁} C] (D : Type u₂) [Category.{v₂, u₂} D] [∀ (a b : C), Limits.HasProductsOfShape (a b) D] {F G : Functor C D} (η : F G) :
                  Epi η ∀ (c : C), Epi (η.app c)

                  See also the file CategoryTheory.Limits.FunctorCategory.EpiMono for a similar result under a HasPushouts assumption.