Adjunctions and limits #
A left adjoint preserves colimits (CategoryTheory.Adjunction.leftAdjoint_preservesColimits
),
and a right adjoint preserves limits (CategoryTheory.Adjunction.rightAdjoint_preservesLimits
).
Equivalences create and reflect (co)limits.
(CategoryTheory.Functor.createsLimitsOfIsEquivalence
,
CategoryTheory.Functor.createsColimitsOfIsEquivalence
,
CategoryTheory.Functor.reflectsLimits_of_isEquivalence
,
CategoryTheory.Functor.reflectsColimits_of_isEquivalence
.)
In CategoryTheory.Adjunction.coconesIso
we show that
when F ⊣ G
,
the functor associating to each Y
the cocones over K ⋙ F
with cone point Y
is naturally isomorphic to
the functor associating to each Y
the cocones over K
with cone point G.obj Y
.
The right adjoint of Cocones.functoriality K F : Cocone K ⥤ Cocone (K ⋙ F)
.
Auxiliary definition for functorialityIsLeftAdjoint
.
Equations
Instances For
The unit for the adjunction for Cocones.functoriality K F : Cocone K ⥤ Cocone (K ⋙ F)
.
Auxiliary definition for functorialityIsLeftAdjoint
.
Equations
Instances For
The counit for the adjunction for Cocones.functoriality K F : Cocone K ⥤ Cocone (K ⋙ F)
.
Auxiliary definition for functorialityIsLeftAdjoint
.
Equations
Instances For
The functor Cocones.functoriality K F : Cocone K ⥤ Cocone (K ⋙ F)
is a left adjoint.
Equations
Instances For
A left adjoint preserves colimits.
Equations
Transport a HasColimitsOfShape
instance across an equivalence.
Transport a HasColimitsOfSize
instance across an equivalence.
The left adjoint of Cones.functoriality K G : Cone K ⥤ Cone (K ⋙ G)
.
Auxiliary definition for functorialityIsRightAdjoint
.
Equations
Instances For
The unit for the adjunction for Cones.functoriality K G : Cone K ⥤ Cone (K ⋙ G)
.
Auxiliary definition for functorialityIsRightAdjoint
.
Equations
Instances For
The counit for the adjunction for Cones.functoriality K G : Cone K ⥤ Cone (K ⋙ G)
.
Auxiliary definition for functorialityIsRightAdjoint
.
Equations
Instances For
The functor Cones.functoriality K G : Cone K ⥤ Cone (K ⋙ G)
is a right adjoint.
Equations
Instances For
A right adjoint preserves limits.
Equations
Transport a HasLimitsOfShape
instance across an equivalence.
Transport a HasLimitsOfSize
instance across an equivalence.
auxiliary construction for coconesIso
Equations
Instances For
auxiliary construction for coconesIso
Equations
Instances For
auxiliary construction for conesIso
Equations
Instances For
auxiliary construction for conesIso
Equations
Instances For
When F ⊣ G
,
the functor associating to each Y
the cocones over K ⋙ F
with cone point Y
is naturally isomorphic to
the functor associating to each Y
the cocones over K
with cone point G.obj Y
.
Equations
Instances For
When F ⊣ G
,
the functor associating to each X
the cones over K
with cone point F.op.obj X
is naturally isomorphic to
the functor associating to each X
the cones over K ⋙ G
with cone point X
.