Documentation

Mathlib.CategoryTheory.Adjunction.Limits

Adjunctions and limits #

A left adjoint preserves colimits (CategoryTheory.Adjunction.leftAdjoint_preservesColimits), and a right adjoint preserves limits (CategoryTheory.Adjunction.rightAdjoint_preservesLimits).

Equivalences create and reflect (co)limits. (CategoryTheory.Functor.createsLimitsOfIsEquivalence, CategoryTheory.Functor.createsColimitsOfIsEquivalence, CategoryTheory.Functor.reflectsLimits_of_isEquivalence, CategoryTheory.Functor.reflectsColimits_of_isEquivalence.)

In CategoryTheory.Adjunction.coconesIso we show that when F ⊣ G, the functor associating to each Y the cocones over K ⋙ F with cone point Y is naturally isomorphic to the functor associating to each Y the cocones over K with cone point G.obj Y.

The right adjoint of Cocones.functoriality K F : Cocone K ⥤ Cocone (K ⋙ F).

Auxiliary definition for functorialityIsLeftAdjoint.

Equations
    Instances For

      The unit for the adjunction for Cocones.functoriality K F : Cocone K ⥤ Cocone (K ⋙ F).

      Auxiliary definition for functorialityIsLeftAdjoint.

      Equations
        Instances For
          @[simp]
          theorem CategoryTheory.Adjunction.functorialityUnit_app_hom {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} (adj : F G) {J : Type u} [Category.{v, u} J] (K : Functor J C) (c : Limits.Cocone K) :
          ((adj.functorialityUnit K).app c).hom = adj.unit.app c.pt

          The counit for the adjunction for Cocones.functoriality K F : Cocone K ⥤ Cocone (K ⋙ F).

          Auxiliary definition for functorialityIsLeftAdjoint.

          Equations
            Instances For
              @[simp]
              theorem CategoryTheory.Adjunction.functorialityCounit_app_hom {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} (adj : F G) {J : Type u} [Category.{v, u} J] (K : Functor J C) (c : Limits.Cocone (K.comp F)) :

              The functor Cocones.functoriality K F : Cocone K ⥤ Cocone (K ⋙ F) is a left adjoint.

              Equations
                Instances For

                  Transport a HasColimitsOfShape instance across an equivalence.

                  The left adjoint of Cones.functoriality K G : Cone K ⥤ Cone (K ⋙ G).

                  Auxiliary definition for functorialityIsRightAdjoint.

                  Equations
                    Instances For

                      The unit for the adjunction for Cones.functoriality K G : Cone K ⥤ Cone (K ⋙ G).

                      Auxiliary definition for functorialityIsRightAdjoint.

                      Equations
                        Instances For
                          @[simp]
                          theorem CategoryTheory.Adjunction.functorialityUnit'_app_hom {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} (adj : F G) {J : Type u} [Category.{v, u} J] (K : Functor J D) (c : Limits.Cone (K.comp G)) :
                          ((adj.functorialityUnit' K).app c).hom = adj.unit.app c.pt

                          The counit for the adjunction for Cones.functoriality K G : Cone K ⥤ Cone (K ⋙ G).

                          Auxiliary definition for functorialityIsRightAdjoint.

                          Equations
                            Instances For
                              @[simp]
                              theorem CategoryTheory.Adjunction.functorialityCounit'_app_hom {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} (adj : F G) {J : Type u} [Category.{v, u} J] (K : Functor J D) (c : Limits.Cone K) :

                              The functor Cones.functoriality K G : Cone K ⥤ Cone (K ⋙ G) is a right adjoint.

                              Equations
                                Instances For

                                  Transport a HasLimitsOfShape instance across an equivalence.

                                  def CategoryTheory.Adjunction.coconesIsoComponentHom {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} (adj : F G) {J : Type u} [Category.{v, u} J] {K : Functor J C} (Y : D) (t : ((cocones J D).obj (Opposite.op (K.comp F))).obj Y) :
                                  (G.comp ((cocones J C).obj (Opposite.op K))).obj Y

                                  auxiliary construction for coconesIso

                                  Equations
                                    Instances For
                                      def CategoryTheory.Adjunction.coconesIsoComponentInv {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} (adj : F G) {J : Type u} [Category.{v, u} J] {K : Functor J C} (Y : D) (t : (G.comp ((cocones J C).obj (Opposite.op K))).obj Y) :
                                      ((cocones J D).obj (Opposite.op (K.comp F))).obj Y

                                      auxiliary construction for coconesIso

                                      Equations
                                        Instances For
                                          def CategoryTheory.Adjunction.conesIsoComponentHom {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} (adj : F G) {J : Type u} [Category.{v, u} J] {K : Functor J D} (X : Cᵒᵖ) (t : (F.op.comp ((cones J D).obj K)).obj X) :
                                          ((cones J C).obj (K.comp G)).obj X

                                          auxiliary construction for conesIso

                                          Equations
                                            Instances For
                                              def CategoryTheory.Adjunction.conesIsoComponentInv {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} (adj : F G) {J : Type u} [Category.{v, u} J] {K : Functor J D} (X : Cᵒᵖ) (t : ((cones J C).obj (K.comp G)).obj X) :
                                              (F.op.comp ((cones J D).obj K)).obj X

                                              auxiliary construction for conesIso

                                              Equations
                                                Instances For
                                                  def CategoryTheory.Adjunction.coconesIso {C : Type u₁} [Category.{v₀, u₁} C] {D : Type u₂} [Category.{v₀, u₂} D] {F : Functor C D} {G : Functor D C} (adj : F G) {J : Type u} [Category.{v, u} J] {K : Functor J C} :
                                                  (cocones J D).obj (Opposite.op (K.comp F)) G.comp ((cocones J C).obj (Opposite.op K))

                                                  When F ⊣ G, the functor associating to each Y the cocones over K ⋙ F with cone point Y is naturally isomorphic to the functor associating to each Y the cocones over K with cone point G.obj Y.

                                                  Equations
                                                    Instances For
                                                      def CategoryTheory.Adjunction.conesIso {C : Type u₁} [Category.{v₀, u₁} C] {D : Type u₂} [Category.{v₀, u₂} D] {F : Functor C D} {G : Functor D C} (adj : F G) {J : Type u} [Category.{v, u} J] {K : Functor J D} :
                                                      F.op.comp ((cones J D).obj K) (cones J C).obj (K.comp G)

                                                      When F ⊣ G, the functor associating to each X the cones over K with cone point F.op.obj X is naturally isomorphic to the functor associating to each X the cones over K ⋙ G with cone point X.

                                                      Equations
                                                        Instances For