Documentation

Mathlib.CategoryTheory.Adjunction.Opposites

Opposite adjunctions #

This file contains constructions to relate adjunctions of functors to adjunctions of their opposites.

Tags #

adjunction, opposite, uniqueness

If G is adjoint to F then F.unop is adjoint to G.unop.

Equations
    Instances For
      def CategoryTheory.Adjunction.op {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} (h : G F) :
      F.op G.op

      If G is adjoint to F then F.op is adjoint to G.op.

      Equations
        Instances For
          @[simp]
          theorem CategoryTheory.Adjunction.op_unit {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} (h : G F) :
          @[simp]
          theorem CategoryTheory.Adjunction.op_counit {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} (h : G F) :

          If F is adjoint to G.leftOp then G is adjoint to F.leftOp.

          Equations
            Instances For

              If F.rightOp is adjoint to G then G.rightOp is adjoint to F.

              Equations
                Instances For
                  def CategoryTheory.Adjunction.leftAdjointsCoyonedaEquiv {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F F' : Functor C D} {G : Functor D C} (adj1 : F G) (adj2 : F' G) :

                  If F and F' are both adjoint to G, there is a natural isomorphism F.op ⋙ coyoneda ≅ F'.op ⋙ coyoneda. We use this in combination with fullyFaithfulCancelRight to show left adjoints are unique.

                  Equations
                    Instances For
                      def CategoryTheory.Adjunction.natIsoOfRightAdjointNatIso {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F F' : Functor C D} {G G' : Functor D C} (adj1 : F G) (adj2 : F' G') (r : G G') :
                      F F'

                      Given two adjunctions, if the right adjoints are naturally isomorphic, then so are the left adjoints.

                      Note: it is generally better to use Adjunction.natIsoEquiv, see the file Adjunction.Unique. The reason this definition still exists is that apparently CategoryTheory.extendAlongYonedaYoneda uses its definitional properties (TODO: figure out a way to avoid this).

                      Equations
                        Instances For
                          def CategoryTheory.Adjunction.natIsoOfLeftAdjointNatIso {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F F' : Functor C D} {G G' : Functor D C} (adj1 : F G) (adj2 : F' G') (l : F F') :
                          G G'

                          Given two adjunctions, if the left adjoints are naturally isomorphic, then so are the right adjoints.

                          Note: it is generally better to use Adjunction.natIsoEquiv, see the file Adjunction.Unique.

                          Equations
                            Instances For