Modifications between oplax transformations #
A modification Γ
between oplax transformations η
and θ
consists of a family of 2-morphisms
Γ.app a : η.app a ⟶ θ.app a
, which for all 1-morphisms f : a ⟶ b
satisfies the equation
(F.map f ◁ app b) ≫ θ.naturality f = η.naturality f ≫ app a ▷ G.map f
.
Main definitions #
Modification η θ
: modifications between oplax transformationsη
andθ
Modification.vcomp η θ
: the vertical composition of oplax transformationsη
andθ
OplaxTrans.category F G
: the category structure on the oplax transformations betweenF
andG
A modification Γ
between oplax natural transformations η
and θ
consists of a family of
2-morphisms Γ.app a : η.app a ⟶ θ.app a
, which satisfies the equation
(F.map f ◁ app b) ≫ θ.naturality f = η.naturality f ≫ (app a ▷ G.map f)
for each 1-morphism f : a ⟶ b
.
The underlying family of 2-morphisms.
- naturality {a b : B} (f : a ⟶ b) : CategoryStruct.comp (Bicategory.whiskerLeft (F.map f) (self.app b)) (θ.naturality f) = CategoryStruct.comp (η.naturality f) (Bicategory.whiskerRight (self.app a) (G.map f))
The naturality condition.
Instances For
The identity modification.
Equations
Instances For
Equations
Vertical composition of modifications.
Equations
Instances For
Category structure on the oplax natural transformations between OplaxFunctors.
Equations
Instances For
Version of Modification.id_app
using category notation
Version of Modification.comp_app
using category notation
Construct a modification isomorphism between oplax natural transformations by giving object level isomorphisms, and checking naturality only in the forward direction.