Documentation

Mathlib.CategoryTheory.Bicategory.Modification.Oplax

Modifications between oplax transformations #

A modification Γ between oplax transformations η and θ consists of a family of 2-morphisms Γ.app a : η.app a ⟶ θ.app a, which for all 1-morphisms f : a ⟶ b satisfies the equation (F.map f ◁ app b) ≫ θ.naturality f = η.naturality f ≫ app a ▷ G.map f.

Main definitions #

structure CategoryTheory.Oplax.OplaxTrans.Modification {B : Type u₁} [Bicategory B] {C : Type u₂} [Bicategory C] {F G : OplaxFunctor B C} (η θ : F G) :
Type (max u₁ w₂)

A modification Γ between oplax natural transformations η and θ consists of a family of 2-morphisms Γ.app a : η.app a ⟶ θ.app a, which satisfies the equation (F.map f ◁ app b) ≫ θ.naturality f = η.naturality f ≫ (app a ▷ G.map f) for each 1-morphism f : a ⟶ b.

Instances For
    theorem CategoryTheory.Oplax.OplaxTrans.Modification.ext_iff {B : Type u₁} {inst✝ : Bicategory B} {C : Type u₂} {inst✝¹ : Bicategory C} {F G : OplaxFunctor B C} {η θ : F G} {x y : Modification η θ} :
    x = y x.app = y.app
    theorem CategoryTheory.Oplax.OplaxTrans.Modification.ext {B : Type u₁} {inst✝ : Bicategory B} {C : Type u₂} {inst✝¹ : Bicategory C} {F G : OplaxFunctor B C} {η θ : F G} {x y : Modification η θ} (app : x.app = y.app) :
    x = y
    @[simp]
    theorem CategoryTheory.Oplax.OplaxTrans.Modification.naturality_assoc {B : Type u₁} [Bicategory B] {C : Type u₂} [Bicategory C] {F G : OplaxFunctor B C} {η θ : F G} (self : Modification η θ) {a b : B} (f : a b) {Z : F.obj a G.obj b} (h : CategoryStruct.comp (θ.app a) (G.map f) Z) :
    def CategoryTheory.Oplax.OplaxTrans.Modification.id {B : Type u₁} [Bicategory B] {C : Type u₂} [Bicategory C] {F G : OplaxFunctor B C} (η : F G) :

    The identity modification.

    Equations
      Instances For
        @[simp]
        theorem CategoryTheory.Oplax.OplaxTrans.Modification.id_app {B : Type u₁} [Bicategory B] {C : Type u₂} [Bicategory C] {F G : OplaxFunctor B C} (η : F G) (a : B) :
        (id η).app a = CategoryStruct.id (η.app a)
        Equations
          def CategoryTheory.Oplax.OplaxTrans.Modification.vcomp {B : Type u₁} [Bicategory B] {C : Type u₂} [Bicategory C] {F G : OplaxFunctor B C} {η θ ι : F G} (Γ : Modification η θ) (Δ : Modification θ ι) :

          Vertical composition of modifications.

          Equations
            Instances For
              @[simp]
              theorem CategoryTheory.Oplax.OplaxTrans.Modification.vcomp_app {B : Type u₁} [Bicategory B] {C : Type u₂} [Bicategory C] {F G : OplaxFunctor B C} {η θ ι : F G} (Γ : Modification η θ) (Δ : Modification θ ι) (a : B) :
              (Γ.vcomp Δ).app a = CategoryStruct.comp (Γ.app a) (Δ.app a)

              Category structure on the oplax natural transformations between OplaxFunctors.

              Equations
                Instances For
                  @[simp]
                  theorem CategoryTheory.Oplax.OplaxTrans.category_comp {B : Type u₁} [Bicategory B] {C : Type u₂} [Bicategory C] (F G : OplaxFunctor B C) {X✝ Y✝ Z✝ : F G} (Γ : Modification X✝ Y✝) (Δ : Modification Y✝ Z✝) :
                  @[simp]
                  theorem CategoryTheory.Oplax.OplaxTrans.ext {B : Type u₁} [Bicategory B] {C : Type u₂} [Bicategory C] {F G : OplaxFunctor B C} {α β : F G} {m n : α β} (w : ∀ (b : B), m.app b = n.app b) :
                  m = n
                  theorem CategoryTheory.Oplax.OplaxTrans.ext_iff {B : Type u₁} [Bicategory B] {C : Type u₂} [Bicategory C] {F G : OplaxFunctor B C} {α β : F G} {m n : α β} :
                  m = n ∀ (b : B), m.app b = n.app b
                  @[simp]
                  theorem CategoryTheory.Oplax.OplaxTrans.Modification.id_app' {B : Type u₁} [Bicategory B] {C : Type u₂} [Bicategory C] {X : B} {F G : OplaxFunctor B C} (α : F G) :

                  Version of Modification.id_app using category notation

                  @[simp]
                  theorem CategoryTheory.Oplax.OplaxTrans.Modification.comp_app' {B : Type u₁} [Bicategory B] {C : Type u₂} [Bicategory C] {X : B} {F G : OplaxFunctor B C} {α β γ : F G} (m : α β) (n : β γ) :

                  Version of Modification.comp_app using category notation

                  def CategoryTheory.Oplax.OplaxTrans.ModificationIso.ofComponents {B : Type u₁} [Bicategory B] {C : Type u₂} [Bicategory C] {F G : OplaxFunctor B C} {η θ : F G} (app : (a : B) → η.app a θ.app a) (naturality : ∀ {a b : B} (f : a b), CategoryStruct.comp (Bicategory.whiskerLeft (F.map f) (app b).hom) (θ.naturality f) = CategoryStruct.comp (η.naturality f) (Bicategory.whiskerRight (app a).hom (G.map f))) :
                  η θ

                  Construct a modification isomorphism between oplax natural transformations by giving object level isomorphisms, and checking naturality only in the forward direction.

                  Equations
                    Instances For
                      @[simp]
                      theorem CategoryTheory.Oplax.OplaxTrans.ModificationIso.ofComponents_hom_app {B : Type u₁} [Bicategory B] {C : Type u₂} [Bicategory C] {F G : OplaxFunctor B C} {η θ : F G} (app : (a : B) → η.app a θ.app a) (naturality : ∀ {a b : B} (f : a b), CategoryStruct.comp (Bicategory.whiskerLeft (F.map f) (app b).hom) (θ.naturality f) = CategoryStruct.comp (η.naturality f) (Bicategory.whiskerRight (app a).hom (G.map f))) (a : B) :
                      (ofComponents app naturality).hom.app a = (app a).hom
                      @[simp]
                      theorem CategoryTheory.Oplax.OplaxTrans.ModificationIso.ofComponents_inv_app {B : Type u₁} [Bicategory B] {C : Type u₂} [Bicategory C] {F G : OplaxFunctor B C} {η θ : F G} (app : (a : B) → η.app a θ.app a) (naturality : ∀ {a b : B} (f : a b), CategoryStruct.comp (Bicategory.whiskerLeft (F.map f) (app b).hom) (θ.naturality f) = CategoryStruct.comp (η.naturality f) (Bicategory.whiskerRight (app a).hom (G.map f))) (a : B) :
                      (ofComponents app naturality).inv.app a = (app a).inv