The category of bipointed types #
This defines Bipointed
, the category of bipointed types.
TODO #
Monoidal structure
@[reducible, inline]
Turns a bipointing into a bipointed type.
Equations
Instances For
instance
Bipointed.instFunLikeHomSubtypeX
(X : Bipointed)
(Y : Bipointed)
:
FunLike (X.HomSubtype Y) X.X Y.X
Equations
BipointedToPointed_fst
is inverse to PointedToBipointed
.
Equations
Instances For
@[simp]
theorem
pointedToBipointedCompBipointedToPointedFst_inv_app_toFun
(X : Pointed)
(a : ((CategoryTheory.Functor.id Pointed).obj X).X)
:
@[simp]
theorem
pointedToBipointedCompBipointedToPointedFst_hom_app_toFun
(X : Pointed)
(a : ((pointedToBipointed.comp bipointedToPointedFst).obj X).X)
:
BipointedToPointed_snd
is inverse to PointedToBipointed
.
Equations
Instances For
@[simp]
theorem
pointedToBipointedCompBipointedToPointedSnd_inv_app_toFun
(X : Pointed)
(a : ((CategoryTheory.Functor.id Pointed).obj X).X)
:
@[simp]
theorem
pointedToBipointedCompBipointedToPointedSnd_hom_app_toFun
(X : Pointed)
(a : ((pointedToBipointed.comp bipointedToPointedSnd).obj X).X)
:
The free/forgetful adjunction between PointedToBipointed_fst
and BipointedToPointed_fst
.
Equations
Instances For
The free/forgetful adjunction between PointedToBipointed_snd
and BipointedToPointed_snd
.