Documentation

Mathlib.CategoryTheory.Category.Cat.Op

The dualizing functor on Cat #

We define a (strict) functor opFunctor and an equivalence assigning opposite categories to categories. We then show that this functor is strictly involutive and that it induces an equivalence on Cat.

The endofunctor Cat ⥤ Cat assigning to each category its opposite category.

Equations
    Instances For
      @[simp]
      theorem CategoryTheory.Cat.opFunctor_map {X✝ Y✝ : Cat} (F : Functor X✝ Y✝) :

      The natural isomorphism between the double application of Cat.opFunctor and the identity functor on Cat.

      Equations
        Instances For
          @[simp]
          @[simp]
          theorem CategoryTheory.Cat.opFunctorInvolutive_inv_app_map (X : Cat) {X✝ Y✝ : X} (f : X✝ Y✝) :

          The equivalence Cat ≌ Cat associating each category with its opposite category.

          Equations
            Instances For
              @[simp]
              theorem CategoryTheory.Cat.opEquivalence_counitIso :
              opEquivalence.counitIso = NatIso.ofComponents (fun (x : Cat) => { hom := unopUnop x, inv := opOp ((Functor.id Cat).obj x), hom_inv_id := , inv_hom_id := }) @opEquivalence._proof_4
              @[simp]
              theorem CategoryTheory.Cat.opEquivalence_unitIso :
              opEquivalence.unitIso = NatIso.ofComponents (fun (x : Cat) => { hom := opOp ((Functor.id Cat).obj x), inv := unopUnop x, hom_inv_id := , inv_hom_id := }) @opEquivalence._proof_3