Documentation

Mathlib.CategoryTheory.Comma.Arrow

The category of arrows #

The category of arrows, with morphisms commutative squares. We set this up as a specialization of the comma category Comma L R, where L and R are both the identity functor.

Tags #

comma, arrow

def CategoryTheory.Arrow (T : Type u) [Category.{v, u} T] :
Type (max u v)

The arrow category of T has as objects all morphisms in T and as morphisms commutative squares in T.

Equations
    Instances For
      theorem CategoryTheory.Arrow.hom_ext {T : Type u} [Category.{v, u} T] {X Y : Arrow T} (f g : X Y) (h₁ : f.left = g.left) (h₂ : f.right = g.right) :
      f = g
      theorem CategoryTheory.Arrow.hom_ext_iff {T : Type u} [Category.{v, u} T] {X Y : Arrow T} {f g : X Y} :
      f = g f.left = g.left f.right = g.right
      @[simp]
      theorem CategoryTheory.Arrow.comp_left {T : Type u} [Category.{v, u} T] {X Y Z : Arrow T} (f : X Y) (g : Y Z) :
      @[simp]
      def CategoryTheory.Arrow.mk {T : Type u} [Category.{v, u} T] {X Y : T} (f : X Y) :

      An object in the arrow category is simply a morphism in T.

      Equations
        Instances For
          @[simp]
          theorem CategoryTheory.Arrow.mk_left {T : Type u} [Category.{v, u} T] {X Y : T} (f : X Y) :
          (mk f).left = X
          @[simp]
          theorem CategoryTheory.Arrow.mk_hom {T : Type u} [Category.{v, u} T] {X Y : T} (f : X Y) :
          (mk f).hom = f
          @[simp]
          theorem CategoryTheory.Arrow.mk_right {T : Type u} [Category.{v, u} T] {X Y : T} (f : X Y) :
          (mk f).right = Y
          @[simp]
          theorem CategoryTheory.Arrow.mk_eq {T : Type u} [Category.{v, u} T] (f : Arrow T) :
          mk f.hom = f
          theorem CategoryTheory.Arrow.mk_inj {T : Type u} [Category.{v, u} T] (A B : T) {f g : A B} :
          mk f = mk g f = g
          instance CategoryTheory.Arrow.instCoeOutHom {T : Type u} [Category.{v, u} T] {X Y : T} :
          CoeOut (X Y) (Arrow T)
          Equations
            theorem CategoryTheory.Arrow.mk_eq_mk_iff {T : Type u} [Category.{v, u} T] {X Y X' Y' : T} (f : X Y) (f' : X' Y') :
            mk f = mk f' (hX : X = X'), (hY : Y = Y'), f = CategoryStruct.comp (eqToHom hX) (CategoryStruct.comp f' (eqToHom ))
            theorem CategoryTheory.Arrow.ext {T : Type u} [Category.{v, u} T] {f g : Arrow T} (h₁ : f.left = g.left) (h₂ : f.right = g.right) (h₃ : f.hom = CategoryStruct.comp (eqToHom h₁) (CategoryStruct.comp g.hom (eqToHom ))) :
            f = g
            @[simp]
            theorem CategoryTheory.Arrow.arrow_mk_comp_eqToHom {T : Type u} [Category.{v, u} T] {X Y Y' : T} (f : X Y) (h : Y = Y') :
            @[simp]
            theorem CategoryTheory.Arrow.arrow_mk_eqToHom_comp {T : Type u} [Category.{v, u} T] {X' X Y : T} (f : X Y) (h : X' = X) :
            def CategoryTheory.Arrow.homMk {T : Type u} [Category.{v, u} T] {f g : Arrow T} (u : f.left g.left) (v : f.right g.right) (w : CategoryStruct.comp u g.hom = CategoryStruct.comp f.hom v := by cat_disch) :
            f g

            A morphism in the arrow category is a commutative square connecting two objects of the arrow category.

            Equations
              Instances For
                @[simp]
                theorem CategoryTheory.Arrow.homMk_right {T : Type u} [Category.{v, u} T] {f g : Arrow T} (u : f.left g.left) (v : f.right g.right) (w : CategoryStruct.comp u g.hom = CategoryStruct.comp f.hom v := by cat_disch) :
                (homMk u v w).right = v
                @[simp]
                theorem CategoryTheory.Arrow.homMk_left {T : Type u} [Category.{v, u} T] {f g : Arrow T} (u : f.left g.left) (v : f.right g.right) (w : CategoryStruct.comp u g.hom = CategoryStruct.comp f.hom v := by cat_disch) :
                (homMk u v w).left = u
                def CategoryTheory.Arrow.homMk' {T : Type u} [Category.{v, u} T] {X Y : T} {f : X Y} {P Q : T} {g : P Q} (u : X P) (v : Y Q) (w : CategoryStruct.comp u g = CategoryStruct.comp f v := by cat_disch) :
                mk f mk g

                We can also build a morphism in the arrow category out of any commutative square in T.

                Equations
                  Instances For
                    @[simp]
                    theorem CategoryTheory.Arrow.homMk'_left {T : Type u} [Category.{v, u} T] {X Y : T} {f : X Y} {P Q : T} {g : P Q} (u : X P) (v : Y Q) (w : CategoryStruct.comp u g = CategoryStruct.comp f v := by cat_disch) :
                    (homMk' u v w).left = u
                    @[simp]
                    theorem CategoryTheory.Arrow.homMk'_right {T : Type u} [Category.{v, u} T] {X Y : T} {f : X Y} {P Q : T} {g : P Q} (u : X P) (v : Y Q) (w : CategoryStruct.comp u g = CategoryStruct.comp f v := by cat_disch) :
                    (homMk' u v w).right = v
                    @[simp]
                    theorem CategoryTheory.Arrow.w_mk_right {T : Type u} [Category.{v, u} T] {f : Arrow T} {X Y : T} {g : X Y} (sq : f mk g) :
                    @[simp]
                    theorem CategoryTheory.Arrow.w_mk_right_assoc {T : Type u} [Category.{v, u} T] {f : Arrow T} {X Y : T} {g : X Y} (sq : f mk g) {Z : T} (h : Y Z) :
                    def CategoryTheory.Arrow.isoMk {T : Type u} [Category.{v, u} T] {f g : Arrow T} (l : f.left g.left) (r : f.right g.right) (h : CategoryStruct.comp l.hom g.hom = CategoryStruct.comp f.hom r.hom := by cat_disch) :
                    f g

                    Create an isomorphism between arrows, by providing isomorphisms between the domains and codomains, and a proof that the square commutes.

                    Equations
                      Instances For
                        @[simp]
                        theorem CategoryTheory.Arrow.isoMk_inv_right {T : Type u} [Category.{v, u} T] {f g : Arrow T} (l : f.left g.left) (r : f.right g.right) (h : CategoryStruct.comp l.hom g.hom = CategoryStruct.comp f.hom r.hom := by cat_disch) :
                        (isoMk l r h).inv.right = r.inv
                        @[simp]
                        theorem CategoryTheory.Arrow.isoMk_inv_left {T : Type u} [Category.{v, u} T] {f g : Arrow T} (l : f.left g.left) (r : f.right g.right) (h : CategoryStruct.comp l.hom g.hom = CategoryStruct.comp f.hom r.hom := by cat_disch) :
                        (isoMk l r h).inv.left = l.inv
                        @[simp]
                        theorem CategoryTheory.Arrow.isoMk_hom_right {T : Type u} [Category.{v, u} T] {f g : Arrow T} (l : f.left g.left) (r : f.right g.right) (h : CategoryStruct.comp l.hom g.hom = CategoryStruct.comp f.hom r.hom := by cat_disch) :
                        (isoMk l r h).hom.right = r.hom
                        @[simp]
                        theorem CategoryTheory.Arrow.isoMk_hom_left {T : Type u} [Category.{v, u} T] {f g : Arrow T} (l : f.left g.left) (r : f.right g.right) (h : CategoryStruct.comp l.hom g.hom = CategoryStruct.comp f.hom r.hom := by cat_disch) :
                        (isoMk l r h).hom.left = l.hom
                        @[reducible, inline]
                        abbrev CategoryTheory.Arrow.isoMk' {T : Type u} [Category.{v, u} T] {W X Y Z : T} (f : W X) (g : Y Z) (e₁ : W Y) (e₂ : X Z) (h : CategoryStruct.comp e₁.hom g = CategoryStruct.comp f e₂.hom := by cat_disch) :
                        mk f mk g

                        A variant of Arrow.isoMk that creates an iso between two Arrow.mks with a better type signature.

                        Equations
                          Instances For
                            theorem CategoryTheory.Arrow.hom.congr_left {T : Type u} [Category.{v, u} T] {f g : Arrow T} {φ₁ φ₂ : f g} (h : φ₁ = φ₂) :
                            φ₁.left = φ₂.left
                            theorem CategoryTheory.Arrow.hom.congr_right {T : Type u} [Category.{v, u} T] {f g : Arrow T} {φ₁ φ₂ : f g} (h : φ₁ = φ₂) :
                            φ₁.right = φ₂.right
                            theorem CategoryTheory.Arrow.iso_w' {T : Type u} [Category.{v, u} T] {W X Y Z : T} {f : W X} {g : Y Z} (e : mk f mk g) :
                            instance CategoryTheory.Arrow.isIso_left {T : Type u} [Category.{v, u} T] {f g : Arrow T} (sq : f g) [IsIso sq] :
                            instance CategoryTheory.Arrow.isIso_right {T : Type u} [Category.{v, u} T] {f g : Arrow T} (sq : f g) [IsIso sq] :
                            theorem CategoryTheory.Arrow.isIso_of_isIso {T : Type u} [Category.{v, u} T] {X Y : T} {f : X Y} {g : Arrow T} (sq : mk f g) [IsIso sq] [IsIso f] :
                            theorem CategoryTheory.Arrow.isIso_iff_isIso_of_isIso {T : Type u} [Category.{v, u} T] {W X Y Z : T} {f : W X} {g : Y Z} (sq : mk f mk g) [IsIso sq] :
                            theorem CategoryTheory.Arrow.isIso_hom_iff_isIso_of_isIso {T : Type u} [Category.{v, u} T] {Y Z : T} {f : Arrow T} {g : Y Z} (sq : f mk g) [IsIso sq] :
                            @[simp]
                            theorem CategoryTheory.Arrow.inv_left {T : Type u} [Category.{v, u} T] {f g : Arrow T} (sq : f g) [IsIso sq] :
                            (inv sq).left = inv sq.left
                            @[simp]
                            theorem CategoryTheory.Arrow.inv_right {T : Type u} [Category.{v, u} T] {f g : Arrow T} (sq : f g) [IsIso sq] :
                            (inv sq).right = inv sq.right
                            instance CategoryTheory.Arrow.mono_left {T : Type u} [Category.{v, u} T] {f g : Arrow T} (sq : f g) [Mono sq] :
                            instance CategoryTheory.Arrow.epi_right {T : Type u} [Category.{v, u} T] {f g : Arrow T} (sq : f g) [Epi sq] :
                            @[simp]
                            @[simp]
                            @[simp]

                            Given a square from an arrow i to an isomorphism p, express the source part of sq in terms of the inverse of p.

                            Given a square from an isomorphism i to an arrow p, express the target part of sq in terms of the inverse of i.

                            def CategoryTheory.Arrow.squareToSnd {C : Type u} [Category.{v, u} C] {X Y Z : C} {i : Arrow C} {f : X Y} {g : Y Z} (sq : i mk (CategoryStruct.comp f g)) :
                            i mk g

                            A helper construction: given a square between i and f ≫ g, produce a square between i and g, whose top leg uses f:

                            A  → X
                                 ↓f
                            ↓i   Y             --> A → Y
                                 ↓g                ↓i  ↓g
                            B  → Z                 B → Z
                            
                            Equations
                              Instances For
                                @[simp]
                                theorem CategoryTheory.Arrow.squareToSnd_left {C : Type u} [Category.{v, u} C] {X Y Z : C} {i : Arrow C} {f : X Y} {g : Y Z} (sq : i mk (CategoryStruct.comp f g)) :
                                @[simp]
                                theorem CategoryTheory.Arrow.squareToSnd_right {C : Type u} [Category.{v, u} C] {X Y Z : C} {i : Arrow C} {f : X Y} {g : Y Z} (sq : i mk (CategoryStruct.comp f g)) :

                                The functor sending an arrow to its source.

                                Equations
                                  Instances For
                                    @[simp]
                                    theorem CategoryTheory.Arrow.leftFunc_map {C : Type u} [Category.{v, u} C] {X✝ Y✝ : Comma (Functor.id C) (Functor.id C)} (f : X✝ Y✝) :

                                    The functor sending an arrow to its target.

                                    Equations
                                      Instances For
                                        @[simp]
                                        theorem CategoryTheory.Arrow.rightFunc_map {C : Type u} [Category.{v, u} C] {X✝ Y✝ : Comma (Functor.id C) (Functor.id C)} (f : X✝ Y✝) :

                                        The natural transformation from leftFunc to rightFunc, given by the arrow itself.

                                        Equations
                                          Instances For

                                            A functor C ⥤ D induces a functor between the corresponding arrow categories.

                                            Equations
                                              Instances For
                                                @[simp]
                                                @[simp]
                                                theorem CategoryTheory.Functor.mapArrow_map_left {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (F : Functor C D) {X✝ Y✝ : Arrow C} (f : X✝ Y✝) :
                                                @[simp]
                                                theorem CategoryTheory.Functor.mapArrow_map_right {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (F : Functor C D) {X✝ Y✝ : Arrow C} (f : X✝ Y✝) :

                                                The functor (C ⥤ D) ⥤ (Arrow C ⥤ Arrow D) which sends a functor F : C ⥤ D to F.mapArrow.

                                                Equations
                                                  Instances For
                                                    @[simp]
                                                    theorem CategoryTheory.Functor.mapArrowFunctor_map_app_left (C : Type u₁) [Category.{v₁, u₁} C] (D : Type u₂) [Category.{v₂, u₂} D] {X✝ Y✝ : Functor C D} (τ : X✝ Y✝) (f : Arrow C) :
                                                    (((mapArrowFunctor C D).map τ).app f).left = τ.app ((Functor.id C).obj f.left)
                                                    @[simp]
                                                    theorem CategoryTheory.Functor.mapArrowFunctor_map_app_right (C : Type u₁) [Category.{v₁, u₁} C] (D : Type u₂) [Category.{v₂, u₂} D] {X✝ Y✝ : Functor C D} (τ : X✝ Y✝) (f : Arrow C) :
                                                    (((mapArrowFunctor C D).map τ).app f).right = τ.app ((Functor.id C).obj f.right)

                                                    The equivalence of categories Arrow C ≌ Arrow D induced by an equivalence C ≌ D.

                                                    Equations
                                                      Instances For
                                                        def CategoryTheory.Arrow.isoOfNatIso {C : Type u_1} {D : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} D] {F G : Functor C D} (e : F G) (f : Arrow C) :

                                                        The images of f : Arrow C by two isomorphic functors F : C ⥤ D are isomorphic arrows in D.

                                                        Equations
                                                          Instances For
                                                            def CategoryTheory.Arrow.equivSigma (T : Type u) [Category.{v, u} T] :
                                                            Arrow T (X : T) × (Y : T) × (X Y)

                                                            Arrow T is equivalent to a sigma type.

                                                            Equations
                                                              Instances For
                                                                @[simp]
                                                                theorem CategoryTheory.Arrow.equivSigma_symm_apply_right (T : Type u) [Category.{v, u} T] (x : (X : T) × (Y : T) × (X Y)) :
                                                                @[simp]
                                                                theorem CategoryTheory.Arrow.equivSigma_symm_apply_left (T : Type u) [Category.{v, u} T] (x : (X : T) × (Y : T) × (X Y)) :
                                                                @[simp]
                                                                theorem CategoryTheory.Arrow.equivSigma_symm_apply_hom (T : Type u) [Category.{v, u} T] (x : (X : T) × (Y : T) × (X Y)) :

                                                                The equivalence Arrow (Discrete S) ≃ S.

                                                                Equations
                                                                  Instances For
                                                                    theorem CategoryTheory.Arrow.functor_ext {C : Type u_1} {D : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} D] {F G : Functor C D} (h : ∀ ⦃X Y : C⦄ (f : X Y), F.mapArrow.obj (mk f) = G.mapArrow.obj (mk f)) :
                                                                    F = G

                                                                    Extensionality lemma for functors C ⥤ D which uses as an assumption that the induced maps Arrow C → Arrow D coincide.