Documentation

Mathlib.CategoryTheory.FiberedCategory.Grothendieck

The Grothendieck construction gives a fibered category #

In this file we show that the Grothendieck applied to a pseudofunctor F gives a fibered category over the base category.

We also provide a HasFibers instance to ∫ F, such that the fiber over S is the category F(S).

References #

[Vistoli2008] "Notes on Grothendieck Topologies, Fibered Categories and Descent Theory" by Angelo Vistoli

@[reducible, inline]

The domain of the cartesian lift of f.

Equations
    Instances For
      @[reducible, inline]
      abbrev CategoryTheory.Pseudofunctor.Grothendieck.cartesianLift {𝒮 : Type u_1} [Category.{u_2, u_1} 𝒮] {F : Pseudofunctor (LocallyDiscrete 𝒮ᵒᵖ) Cat} {R S : 𝒮} (a : (F.obj { as := Opposite.op S })) (f : R S) :
      domainCartesianLift a f { base := S, fiber := a }

      The cartesian lift of f.

      Equations
        Instances For
          @[reducible, inline]
          abbrev CategoryTheory.Pseudofunctor.Grothendieck.homCartesianLift {𝒮 : Type u_1} [Category.{u_2, u_1} 𝒮] {F : Pseudofunctor (LocallyDiscrete 𝒮ᵒᵖ) Cat} {R S : 𝒮} {a : (F.obj { as := Opposite.op S })} (f : R S) {a' : F.Grothendieck} (g : a'.base R) (φ' : a' { base := S, fiber := a }) [(forget F).IsHomLift (CategoryStruct.comp g f) φ'] :

          Given some lift φ' of g ≫ f, the canonical map from the domain of φ' to the domain of the cartesian lift of f.

          Equations
            Instances For
              instance CategoryTheory.Pseudofunctor.Grothendieck.isHomLift_homCartesianLift {𝒮 : Type u_1} [Category.{u_2, u_1} 𝒮] {F : Pseudofunctor (LocallyDiscrete 𝒮ᵒᵖ) Cat} {R S : 𝒮} (a : (F.obj { as := Opposite.op S })) (f : R S) {a' : F.Grothendieck} {φ' : a' { base := S, fiber := a }} {g : a'.base R} [(forget F).IsHomLift (CategoryStruct.comp g f) φ'] :

              forget F : ∫ F ⥤ 𝒮 is a fibered category.

              The inclusion map from F(S) into ∫ F.

              Equations
                Instances For
                  @[simp]
                  theorem CategoryTheory.Pseudofunctor.Grothendieck.ι_obj_fiber {𝒮 : Type u_1} [Category.{u_2, u_1} 𝒮] (F : Pseudofunctor (LocallyDiscrete 𝒮ᵒᵖ) Cat) (S : 𝒮) (a : (F.obj { as := Opposite.op S })) :
                  ((ι F S).obj a).fiber = a
                  @[simp]
                  theorem CategoryTheory.Pseudofunctor.Grothendieck.ι_map_base {𝒮 : Type u_1} [Category.{u_2, u_1} 𝒮] (F : Pseudofunctor (LocallyDiscrete 𝒮ᵒᵖ) Cat) (S : 𝒮) {a b : (F.obj { as := Opposite.op S })} (φ : a b) :
                  @[simp]
                  theorem CategoryTheory.Pseudofunctor.Grothendieck.ι_map_fiber {𝒮 : Type u_1} [Category.{u_2, u_1} 𝒮] (F : Pseudofunctor (LocallyDiscrete 𝒮ᵒᵖ) Cat) (S : 𝒮) {a b : (F.obj { as := Opposite.op S })} (φ : a b) :
                  ((ι F S).map φ).fiber = CategoryStruct.comp φ ((F.mapId { as := Opposite.op S }).inv.app b)
                  @[simp]
                  theorem CategoryTheory.Pseudofunctor.Grothendieck.ι_obj_base {𝒮 : Type u_1} [Category.{u_2, u_1} 𝒮] (F : Pseudofunctor (LocallyDiscrete 𝒮ᵒᵖ) Cat) (S : 𝒮) (a : (F.obj { as := Opposite.op S })) :
                  ((ι F S).obj a).base = S

                  The natural isomorphism encoding comp_const.

                  Equations
                    Instances For

                      HasFibers instance for ∫ F, where the fiber over S is F.obj ⟨op S⟩.

                      Equations