Documentation

Mathlib.CategoryTheory.Functor.Currying

Curry and uncurry, as functors. #

We define curry : ((C × D) ⥤ E) ⥤ (C ⥤ (D ⥤ E)) and uncurry : (C ⥤ (D ⥤ E)) ⥤ ((C × D) ⥤ E), and verify that they provide an equivalence of categories currying : (C ⥤ (D ⥤ E)) ≌ ((C × D) ⥤ E).

This is used in CategoryTheory.Category.Cat.CartesianClosed to equip the category of small categories Cat.{u, u} with a cartesian closed structure.

The uncurrying functor, taking a functor C ⥤ (D ⥤ E) and producing a functor (C × D) ⥤ E.

Equations
    Instances For
      @[simp]
      theorem CategoryTheory.Functor.uncurry_obj_obj {C : Type u₂} [Category.{v₂, u₂} C] {D : Type u₃} [Category.{v₃, u₃} D] {E : Type u₄} [Category.{v₄, u₄} E] (F : Functor C (Functor D E)) (X : C × D) :
      (uncurry.obj F).obj X = (F.obj X.1).obj X.2
      @[simp]
      theorem CategoryTheory.Functor.uncurry_map_app {C : Type u₂} [Category.{v₂, u₂} C] {D : Type u₃} [Category.{v₃, u₃} D] {E : Type u₄} [Category.{v₄, u₄} E] {X✝ Y✝ : Functor C (Functor D E)} (T : X✝ Y✝) (X : C × D) :
      (uncurry.map T).app X = (T.app X.1).app X.2
      @[simp]
      theorem CategoryTheory.Functor.uncurry_obj_map {C : Type u₂} [Category.{v₂, u₂} C] {D : Type u₃} [Category.{v₃, u₃} D] {E : Type u₄} [Category.{v₄, u₄} E] (F : Functor C (Functor D E)) {X Y : C × D} (f : X Y) :
      (uncurry.obj F).map f = CategoryStruct.comp ((F.map f.1).app X.2) ((F.obj Y.1).map f.2)

      The object level part of the currying functor. (See curry for the functorial version.)

      Equations
        Instances For

          The currying functor, taking a functor (C × D) ⥤ E and producing a functor C ⥤ (D ⥤ E).

          Equations
            Instances For
              @[simp]
              theorem CategoryTheory.Functor.curry_obj_map_app {C : Type u₂} [Category.{v₂, u₂} C] {D : Type u₃} [Category.{v₃, u₃} D] {E : Type u₄} [Category.{v₄, u₄} E] (F : Functor (C × D) E) {X✝ Y✝ : C} (f : X✝ Y✝) (Y : D) :
              @[simp]
              theorem CategoryTheory.Functor.curry_map_app_app {C : Type u₂} [Category.{v₂, u₂} C] {D : Type u₃} [Category.{v₃, u₃} D] {E : Type u₄} [Category.{v₄, u₄} E] {X✝ Y✝ : Functor (C × D) E} (T : X✝ Y✝) (X : C) (Y : D) :
              ((curry.map T).app X).app Y = T.app (X, Y)
              @[simp]
              theorem CategoryTheory.Functor.curry_obj_obj_obj {C : Type u₂} [Category.{v₂, u₂} C] {D : Type u₃} [Category.{v₃, u₃} D] {E : Type u₄} [Category.{v₄, u₄} E] (F : Functor (C × D) E) (X : C) (Y : D) :
              ((curry.obj F).obj X).obj Y = F.obj (X, Y)
              @[simp]
              theorem CategoryTheory.Functor.curry_obj_obj_map {C : Type u₂} [Category.{v₂, u₂} C] {D : Type u₃} [Category.{v₃, u₃} D] {E : Type u₄} [Category.{v₄, u₄} E] (F : Functor (C × D) E) (X : C) {X✝ Y✝ : D} (g : X✝ Y✝) :

              The equivalence of functor categories given by currying/uncurrying.

              Equations
                Instances For
                  @[simp]
                  theorem CategoryTheory.Functor.currying_inverse_obj_obj_map {C : Type u₂} [Category.{v₂, u₂} C] {D : Type u₃} [Category.{v₃, u₃} D] {E : Type u₄} [Category.{v₄, u₄} E] (F : Functor (C × D) E) (X : C) {X✝ Y✝ : D} (g : X✝ Y✝) :
                  @[simp]
                  theorem CategoryTheory.Functor.currying_functor_obj_obj {C : Type u₂} [Category.{v₂, u₂} C] {D : Type u₃} [Category.{v₃, u₃} D] {E : Type u₄} [Category.{v₄, u₄} E] (F : Functor C (Functor D E)) (X : C × D) :
                  (currying.functor.obj F).obj X = (F.obj X.1).obj X.2
                  @[simp]
                  @[simp]
                  theorem CategoryTheory.Functor.currying_inverse_obj_map_app {C : Type u₂} [Category.{v₂, u₂} C] {D : Type u₃} [Category.{v₃, u₃} D] {E : Type u₄} [Category.{v₄, u₄} E] (F : Functor (C × D) E) {X✝ Y✝ : C} (f : X✝ Y✝) (Y : D) :
                  @[simp]
                  theorem CategoryTheory.Functor.currying_inverse_map_app_app {C : Type u₂} [Category.{v₂, u₂} C] {D : Type u₃} [Category.{v₃, u₃} D] {E : Type u₄} [Category.{v₄, u₄} E] {X✝ Y✝ : Functor (C × D) E} (T : X✝ Y✝) (X : C) (Y : D) :
                  ((currying.inverse.map T).app X).app Y = T.app (X, Y)
                  @[simp]
                  theorem CategoryTheory.Functor.currying_functor_obj_map {C : Type u₂} [Category.{v₂, u₂} C] {D : Type u₃} [Category.{v₃, u₃} D] {E : Type u₄} [Category.{v₄, u₄} E] (F : Functor C (Functor D E)) {X Y : C × D} (f : X Y) :
                  (currying.functor.obj F).map f = CategoryStruct.comp ((F.map f.1).app X.2) ((F.obj Y.1).map f.2)
                  @[simp]
                  theorem CategoryTheory.Functor.currying_inverse_obj_obj_obj {C : Type u₂} [Category.{v₂, u₂} C] {D : Type u₃} [Category.{v₃, u₃} D] {E : Type u₄} [Category.{v₄, u₄} E] (F : Functor (C × D) E) (X : C) (Y : D) :
                  ((currying.inverse.obj F).obj X).obj Y = F.obj (X, Y)
                  @[simp]
                  theorem CategoryTheory.Functor.currying_functor_map_app {C : Type u₂} [Category.{v₂, u₂} C] {D : Type u₃} [Category.{v₃, u₃} D] {E : Type u₄} [Category.{v₄, u₄} E] {X✝ Y✝ : Functor C (Functor D E)} (T : X✝ Y✝) (X : C × D) :
                  (currying.functor.map T).app X = (T.app X.1).app X.2
                  @[simp]
                  theorem CategoryTheory.Functor.currying_unitIso_inv_app_app_app {C : Type u₂} [Category.{v₂, u₂} C] {D : Type u₃} [Category.{v₃, u₃} D] {E : Type u₄} [Category.{v₄, u₄} E] (X : Functor C (Functor D E)) (X✝ : C) (X✝ : D) :
                  ((currying.unitIso.inv.app X).app X✝).app X✝ = CategoryStruct.id ((X.obj X✝).obj X✝)
                  @[simp]
                  theorem CategoryTheory.Functor.currying_unitIso_hom_app_app_app {C : Type u₂} [Category.{v₂, u₂} C] {D : Type u₃} [Category.{v₃, u₃} D] {E : Type u₄} [Category.{v₄, u₄} E] (X : Functor C (Functor D E)) (X✝ : C) (X✝ : D) :
                  ((currying.unitIso.hom.app X).app X✝).app X✝ = CategoryStruct.id ((X.obj X✝).obj X✝)
                  @[simp]

                  The equivalence of functor categories given by flipping.

                  Equations
                    Instances For
                      @[simp]
                      theorem CategoryTheory.Functor.flipping_unitIso_inv_app_app_app {C : Type u₂} [Category.{v₂, u₂} C] {D : Type u₃} [Category.{v₃, u₃} D] {E : Type u₄} [Category.{v₄, u₄} E] (X : Functor C (Functor D E)) (X✝ : C) (X✝ : D) :
                      ((flipping.unitIso.inv.app X).app X✝).app X✝ = CategoryStruct.id ((X.obj X✝).obj X✝)
                      @[simp]
                      theorem CategoryTheory.Functor.flipping_functor_obj_obj_map {C : Type u₂} [Category.{v₂, u₂} C] {D : Type u₃} [Category.{v₃, u₃} D] {E : Type u₄} [Category.{v₄, u₄} E] (F : Functor C (Functor D E)) (k : D) {X✝ Y✝ : C} (f : X✝ Y✝) :
                      ((flipping.functor.obj F).obj k).map f = (F.map f).app k
                      @[simp]
                      theorem CategoryTheory.Functor.flipping_inverse_obj_obj_obj {C : Type u₂} [Category.{v₂, u₂} C] {D : Type u₃} [Category.{v₃, u₃} D] {E : Type u₄} [Category.{v₄, u₄} E] (F : Functor D (Functor C E)) (k : C) (j : D) :
                      ((flipping.inverse.obj F).obj k).obj j = (F.obj j).obj k
                      @[simp]
                      theorem CategoryTheory.Functor.flipping_functor_obj_obj_obj {C : Type u₂} [Category.{v₂, u₂} C] {D : Type u₃} [Category.{v₃, u₃} D] {E : Type u₄} [Category.{v₄, u₄} E] (F : Functor C (Functor D E)) (k : D) (j : C) :
                      ((flipping.functor.obj F).obj k).obj j = (F.obj j).obj k
                      @[simp]
                      theorem CategoryTheory.Functor.flipping_functor_map_app_app {C : Type u₂} [Category.{v₂, u₂} C] {D : Type u₃} [Category.{v₃, u₃} D] {E : Type u₄} [Category.{v₄, u₄} E] {F₁ F₂ : Functor C (Functor D E)} (φ : F₁ F₂) (Y : D) (X : C) :
                      ((flipping.functor.map φ).app Y).app X = (φ.app X).app Y
                      @[simp]
                      theorem CategoryTheory.Functor.flipping_unitIso_hom_app_app_app {C : Type u₂} [Category.{v₂, u₂} C] {D : Type u₃} [Category.{v₃, u₃} D] {E : Type u₄} [Category.{v₄, u₄} E] (X : Functor C (Functor D E)) (X✝ : C) (X✝ : D) :
                      ((flipping.unitIso.hom.app X).app X✝).app X✝ = CategoryStruct.id ((X.obj X✝).obj X✝)
                      @[simp]
                      theorem CategoryTheory.Functor.flipping_functor_obj_map_app {C : Type u₂} [Category.{v₂, u₂} C] {D : Type u₃} [Category.{v₃, u₃} D] {E : Type u₄} [Category.{v₄, u₄} E] (F : Functor C (Functor D E)) {X✝ Y✝ : D} (f : X✝ Y✝) (j : C) :
                      ((flipping.functor.obj F).map f).app j = (F.obj j).map f
                      @[simp]
                      theorem CategoryTheory.Functor.flipping_inverse_obj_obj_map {C : Type u₂} [Category.{v₂, u₂} C] {D : Type u₃} [Category.{v₃, u₃} D] {E : Type u₄} [Category.{v₄, u₄} E] (F : Functor D (Functor C E)) (k : C) {X✝ Y✝ : D} (f : X✝ Y✝) :
                      ((flipping.inverse.obj F).obj k).map f = (F.map f).app k
                      @[simp]
                      theorem CategoryTheory.Functor.flipping_counitIso_inv_app_app_app {C : Type u₂} [Category.{v₂, u₂} C] {D : Type u₃} [Category.{v₃, u₃} D] {E : Type u₄} [Category.{v₄, u₄} E] (X : Functor D (Functor C E)) (X✝ : D) (X✝ : C) :
                      ((flipping.counitIso.inv.app X).app X✝).app X✝ = CategoryStruct.id ((X.obj X✝).obj X✝)
                      @[simp]
                      theorem CategoryTheory.Functor.flipping_inverse_map_app_app {C : Type u₂} [Category.{v₂, u₂} C] {D : Type u₃} [Category.{v₃, u₃} D] {E : Type u₄} [Category.{v₄, u₄} E] {F₁ F₂ : Functor D (Functor C E)} (φ : F₁ F₂) (Y : C) (X : D) :
                      ((flipping.inverse.map φ).app Y).app X = (φ.app X).app Y
                      @[simp]
                      theorem CategoryTheory.Functor.flipping_counitIso_hom_app_app_app {C : Type u₂} [Category.{v₂, u₂} C] {D : Type u₃} [Category.{v₃, u₃} D] {E : Type u₄} [Category.{v₄, u₄} E] (X : Functor D (Functor C E)) (X✝ : D) (X✝ : C) :
                      ((flipping.counitIso.hom.app X).app X✝).app X✝ = CategoryStruct.id ((X.obj X✝).obj X✝)
                      @[simp]
                      theorem CategoryTheory.Functor.flipping_inverse_obj_map_app {C : Type u₂} [Category.{v₂, u₂} C] {D : Type u₃} [Category.{v₃, u₃} D] {E : Type u₄} [Category.{v₄, u₄} E] (F : Functor D (Functor C E)) {X✝ Y✝ : C} (f : X✝ Y✝) (j : D) :
                      ((flipping.inverse.obj F).map f).app j = (F.obj j).map f

                      The functor uncurry : (C ⥤ D ⥤ E) ⥤ C × D ⥤ E is fully faithful.

                      Equations
                        Instances For
                          def CategoryTheory.Functor.curryObjProdComp {C : Type u₂} [Category.{v₂, u₂} C] {D : Type u₃} [Category.{v₃, u₃} D] {E : Type u₄} [Category.{v₄, u₄} E] {C' : Type u_1} {D' : Type u_2} [Category.{u_3, u_1} C'] [Category.{u_4, u_2} D'] (F₁ : Functor C D) (F₂ : Functor C' D') (G : Functor (D × D') E) :
                          curry.obj ((F₁.prod F₂).comp G) F₁.comp ((curry.obj G).comp ((whiskeringLeft C' D' E).obj F₂))

                          Given functors F₁ : C ⥤ D, F₂ : C' ⥤ D' and G : D × D' ⥤ E, this is the isomorphism between curry.obj ((F₁.prod F₂).comp G) and F₁ ⋙ curry.obj G ⋙ (whiskeringLeft C' D' E).obj F₂ in the category C ⥤ C' ⥤ E.

                          Equations
                            Instances For
                              @[simp]
                              theorem CategoryTheory.Functor.curryObjProdComp_hom_app_app {C : Type u₂} [Category.{v₂, u₂} C] {D : Type u₃} [Category.{v₃, u₃} D] {E : Type u₄} [Category.{v₄, u₄} E] {C' : Type u_1} {D' : Type u_2} [Category.{u_3, u_1} C'] [Category.{u_4, u_2} D'] (F₁ : Functor C D) (F₂ : Functor C' D') (G : Functor (D × D') E) (X : C) (X✝ : C') :
                              ((F₁.curryObjProdComp F₂ G).hom.app X).app X✝ = CategoryStruct.id (G.obj (F₁.obj X, F₂.obj X✝))
                              @[simp]
                              theorem CategoryTheory.Functor.curryObjProdComp_inv_app_app {C : Type u₂} [Category.{v₂, u₂} C] {D : Type u₃} [Category.{v₃, u₃} D] {E : Type u₄} [Category.{v₄, u₄} E] {C' : Type u_1} {D' : Type u_2} [Category.{u_3, u_1} C'] [Category.{u_4, u_2} D'] (F₁ : Functor C D) (F₂ : Functor C' D') (G : Functor (D × D') E) (X : C) (X✝ : C') :
                              ((F₁.curryObjProdComp F₂ G).inv.app X).app X✝ = CategoryStruct.id (G.obj (F₁.obj X, F₂.obj X✝))

                              F.flip is isomorphic to uncurrying F, swapping the variables, and currying.

                              Equations
                                Instances For

                                  The uncurrying of F.flip is isomorphic to swapping the factors followed by the uncurrying of F.

                                  Equations
                                    Instances For

                                      A version of CategoryTheory.whiskeringRight for bifunctors, obtained by uncurrying, applying whiskeringRight and currying back

                                      Equations
                                        Instances For
                                          @[simp]
                                          theorem CategoryTheory.Functor.whiskeringRight₂_obj_map_app_app (B : Type u₁) [Category.{v₁, u₁} B] (C : Type u₂) [Category.{v₂, u₂} C] (D : Type u₃) [Category.{v₃, u₃} D] (E : Type u₄) [Category.{v₄, u₄} E] (X : Functor C (Functor D E)) {X✝ Y✝ : Functor B C} (f : X✝ Y✝) (Y : Functor B D) (X✝¹ : B) :
                                          ((((whiskeringRight₂ B C D E).obj X).map f).app Y).app X✝¹ = (X.map (f.app X✝¹)).app (Y.obj X✝¹)
                                          @[simp]
                                          theorem CategoryTheory.Functor.whiskeringRight₂_obj_obj_map_app (B : Type u₁) [Category.{v₁, u₁} B] (C : Type u₂) [Category.{v₂, u₂} C] (D : Type u₃) [Category.{v₃, u₃} D] (E : Type u₄) [Category.{v₄, u₄} E] (X : Functor C (Functor D E)) (X✝ : Functor B C) {X✝¹ Y✝ : Functor B D} (g : X✝¹ Y✝) (X✝ : B) :
                                          ((((whiskeringRight₂ B C D E).obj X).obj X✝).map g).app X✝ = (X.obj (X✝.obj X✝)).map (g.app X✝)
                                          @[simp]
                                          theorem CategoryTheory.Functor.whiskeringRight₂_map_app_app_app (B : Type u₁) [Category.{v₁, u₁} B] (C : Type u₂) [Category.{v₂, u₂} C] (D : Type u₃) [Category.{v₃, u₃} D] (E : Type u₄) [Category.{v₄, u₄} E] {X✝ Y✝ : Functor C (Functor D E)} (f : X✝ Y✝) (X : Functor B C) (Y : Functor B D) (c : B) :
                                          ((((whiskeringRight₂ B C D E).map f).app X).app Y).app c = (f.app (X.obj c)).app (Y.obj c)
                                          @[simp]
                                          theorem CategoryTheory.Functor.whiskeringRight₂_obj_obj_obj_obj (B : Type u₁) [Category.{v₁, u₁} B] (C : Type u₂) [Category.{v₂, u₂} C] (D : Type u₃) [Category.{v₃, u₃} D] (E : Type u₄) [Category.{v₄, u₄} E] (X : Functor C (Functor D E)) (X✝ : Functor B C) (Y : Functor B D) (X✝ : B) :
                                          ((((whiskeringRight₂ B C D E).obj X).obj X✝).obj Y).obj X✝ = (X.obj (X✝.obj X✝)).obj (Y.obj X✝)
                                          @[simp]
                                          theorem CategoryTheory.Functor.whiskeringRight₂_obj_obj_obj_map (B : Type u₁) [Category.{v₁, u₁} B] (C : Type u₂) [Category.{v₂, u₂} C] (D : Type u₃) [Category.{v₃, u₃} D] (E : Type u₄) [Category.{v₄, u₄} E] (X : Functor C (Functor D E)) (X✝ : Functor B C) (Y : Functor B D) {X✝¹ Y✝ : B} (f : X✝¹ Y✝) :
                                          ((((whiskeringRight₂ B C D E).obj X).obj X✝).obj Y).map f = CategoryStruct.comp ((X.map (X✝.map f)).app (Y.obj X✝¹)) ((X.obj (X✝.obj Y✝)).map (Y.map f))
                                          theorem CategoryTheory.Functor.curry_obj_injective {C : Type u₂} [Category.{v₂, u₂} C] {D : Type u₃} [Category.{v₃, u₃} D] {E : Type u₄} [Category.{v₄, u₄} E] {F₁ F₂ : Functor (C × D) E} (h : curry.obj F₁ = curry.obj F₂) :
                                          F₁ = F₂
                                          theorem CategoryTheory.Functor.uncurry_obj_injective {B : Type u₁} [Category.{v₁, u₁} B] {C : Type u₂} [Category.{v₂, u₂} C] {D : Type u₃} [Category.{v₃, u₃} D] {F₁ F₂ : Functor B (Functor C D)} (h : uncurry.obj F₁ = uncurry.obj F₂) :
                                          F₁ = F₂
                                          theorem CategoryTheory.Functor.flip_injective {B : Type u₁} [Category.{v₁, u₁} B] {C : Type u₂} [Category.{v₂, u₂} C] {D : Type u₃} [Category.{v₃, u₃} D] {F₁ F₂ : Functor B (Functor C D)} (h : F₁.flip = F₂.flip) :
                                          F₁ = F₂
                                          theorem CategoryTheory.Functor.uncurry_obj_curry_obj_flip_flip {B : Type u₁} [Category.{v₁, u₁} B] {C : Type u₂} [Category.{v₂, u₂} C] {D : Type u₃} [Category.{v₃, u₃} D] {E : Type u₄} [Category.{v₄, u₄} E] {H : Type u₅} [Category.{v₅, u₅} H] (F₁ : Functor B C) (F₂ : Functor D E) (G : Functor (C × E) H) :
                                          uncurry.obj (F₂.comp (F₁.comp (curry.obj G)).flip).flip = (F₁.prod F₂).comp G
                                          theorem CategoryTheory.Functor.uncurry_obj_curry_obj_flip_flip' {B : Type u₁} [Category.{v₁, u₁} B] {C : Type u₂} [Category.{v₂, u₂} C] {D : Type u₃} [Category.{v₃, u₃} D] {E : Type u₄} [Category.{v₄, u₄} E] {H : Type u₅} [Category.{v₅, u₅} H] (F₁ : Functor B C) (F₂ : Functor D E) (G : Functor (C × E) H) :
                                          uncurry.obj (F₁.comp (F₂.comp (curry.obj G).flip).flip) = (F₁.prod F₂).comp G

                                          Natural isomorphism witnessing comp_flip_uncurry_eq.

                                          Equations
                                            Instances For
                                              @[simp]
                                              theorem CategoryTheory.Functor.compFlipUncurryIso_inv_app {B : Type u₁} [Category.{v₁, u₁} B] {C : Type u₂} [Category.{v₂, u₂} C] {D : Type u₃} [Category.{v₃, u₃} D] {E : Type u₄} [Category.{v₄, u₄} E] (F : Functor B D) (G : Functor D (Functor C E)) (X : C × B) :
                                              @[simp]
                                              theorem CategoryTheory.Functor.compFlipUncurryIso_hom_app {B : Type u₁} [Category.{v₁, u₁} B] {C : Type u₂} [Category.{v₂, u₂} C] {D : Type u₃} [Category.{v₃, u₃} D] {E : Type u₄} [Category.{v₄, u₄} E] (F : Functor B D) (G : Functor D (Functor C E)) (X : C × B) :

                                              Natural isomorphism witnessing comp_flip_curry_eq.

                                              Equations
                                                Instances For
                                                  @[simp]
                                                  theorem CategoryTheory.Functor.curryObjCompIso_inv_app_app {B : Type u₁} [Category.{v₁, u₁} B] {C : Type u₂} [Category.{v₂, u₂} C] {D : Type u₃} [Category.{v₃, u₃} D] {E : Type u₄} [Category.{v₄, u₄} E] (F : Functor (C × B) D) (G : Functor D E) (X : B) (X✝ : C) :
                                                  ((F.curryObjCompIso G).inv.app X).app X✝ = CategoryStruct.id (G.obj (F.obj (X✝, X)))
                                                  @[simp]
                                                  theorem CategoryTheory.Functor.curryObjCompIso_hom_app_app {B : Type u₁} [Category.{v₁, u₁} B] {C : Type u₂} [Category.{v₂, u₂} C] {D : Type u₃} [Category.{v₃, u₃} D] {E : Type u₄} [Category.{v₄, u₄} E] (F : Functor (C × B) D) (G : Functor D E) (X : B) (X✝ : C) :
                                                  ((F.curryObjCompIso G).hom.app X).app X✝ = CategoryStruct.id (G.obj (F.obj (X✝, X)))

                                                  The equivalence of types of bifunctors giving by flipping the arguments.

                                                  Equations
                                                    Instances For
                                                      @[simp]
                                                      theorem CategoryTheory.Functor.flippingEquiv_symm_apply_obj_map {C : Type u₂} [Category.{v₂, u₂} C] {D : Type u₃} [Category.{v₃, u₃} D] {E : Type u₄} [Category.{v₄, u₄} E] (F : Functor D (Functor C E)) (k : C) {X✝ Y✝ : D} (f : X✝ Y✝) :
                                                      ((flippingEquiv.symm F).obj k).map f = (F.map f).app k
                                                      @[simp]
                                                      theorem CategoryTheory.Functor.flippingEquiv_apply_obj_map {C : Type u₂} [Category.{v₂, u₂} C] {D : Type u₃} [Category.{v₃, u₃} D] {E : Type u₄} [Category.{v₄, u₄} E] (F : Functor C (Functor D E)) (k : D) {X✝ Y✝ : C} (f : X✝ Y✝) :
                                                      ((flippingEquiv F).obj k).map f = (F.map f).app k
                                                      @[simp]
                                                      theorem CategoryTheory.Functor.flippingEquiv_apply_obj_obj {C : Type u₂} [Category.{v₂, u₂} C] {D : Type u₃} [Category.{v₃, u₃} D] {E : Type u₄} [Category.{v₄, u₄} E] (F : Functor C (Functor D E)) (k : D) (j : C) :
                                                      ((flippingEquiv F).obj k).obj j = (F.obj j).obj k
                                                      @[simp]
                                                      theorem CategoryTheory.Functor.flippingEquiv_symm_apply_obj_obj {C : Type u₂} [Category.{v₂, u₂} C] {D : Type u₃} [Category.{v₃, u₃} D] {E : Type u₄} [Category.{v₄, u₄} E] (F : Functor D (Functor C E)) (k : C) (j : D) :
                                                      ((flippingEquiv.symm F).obj k).obj j = (F.obj j).obj k
                                                      @[simp]
                                                      theorem CategoryTheory.Functor.flippingEquiv_apply_map_app {C : Type u₂} [Category.{v₂, u₂} C] {D : Type u₃} [Category.{v₃, u₃} D] {E : Type u₄} [Category.{v₄, u₄} E] (F : Functor C (Functor D E)) {X✝ Y✝ : D} (f : X✝ Y✝) (j : C) :
                                                      ((flippingEquiv F).map f).app j = (F.obj j).map f
                                                      @[simp]
                                                      theorem CategoryTheory.Functor.flippingEquiv_symm_apply_map_app {C : Type u₂} [Category.{v₂, u₂} C] {D : Type u₃} [Category.{v₃, u₃} D] {E : Type u₄} [Category.{v₄, u₄} E] (F : Functor D (Functor C E)) {X✝ Y✝ : C} (f : X✝ Y✝) (j : D) :
                                                      ((flippingEquiv.symm F).map f).app j = (F.obj j).map f

                                                      The equivalence of types of bifunctors given by currying.

                                                      Equations
                                                        Instances For
                                                          @[simp]
                                                          theorem CategoryTheory.Functor.curryingEquiv_symm_apply_obj_map {C : Type u₂} [Category.{v₂, u₂} C] {D : Type u₃} [Category.{v₃, u₃} D] {E : Type u₄} [Category.{v₄, u₄} E] (G : Functor (C × D) E) (X : C) {X✝ Y✝ : D} (g : X✝ Y✝) :
                                                          @[simp]
                                                          theorem CategoryTheory.Functor.curryingEquiv_symm_apply_map_app {C : Type u₂} [Category.{v₂, u₂} C] {D : Type u₃} [Category.{v₃, u₃} D] {E : Type u₄} [Category.{v₄, u₄} E] (G : Functor (C × D) E) {X✝ Y✝ : C} (f : X✝ Y✝) (Y : D) :
                                                          @[simp]
                                                          theorem CategoryTheory.Functor.curryingEquiv_apply_map {C : Type u₂} [Category.{v₂, u₂} C] {D : Type u₃} [Category.{v₃, u₃} D] {E : Type u₄} [Category.{v₄, u₄} E] (F : Functor C (Functor D E)) {X Y : C × D} (f : X Y) :
                                                          (curryingEquiv F).map f = CategoryStruct.comp ((F.map f.1).app X.2) ((F.obj Y.1).map f.2)
                                                          @[simp]
                                                          theorem CategoryTheory.Functor.curryingEquiv_apply_obj {C : Type u₂} [Category.{v₂, u₂} C] {D : Type u₃} [Category.{v₃, u₃} D] {E : Type u₄} [Category.{v₄, u₄} E] (F : Functor C (Functor D E)) (X : C × D) :
                                                          (curryingEquiv F).obj X = (F.obj X.1).obj X.2
                                                          @[simp]
                                                          theorem CategoryTheory.Functor.curryingEquiv_symm_apply_obj_obj {C : Type u₂} [Category.{v₂, u₂} C] {D : Type u₃} [Category.{v₃, u₃} D] {E : Type u₄} [Category.{v₄, u₄} E] (G : Functor (C × D) E) (X : C) (Y : D) :
                                                          ((curryingEquiv.symm G).obj X).obj Y = G.obj (X, Y)

                                                          The flipped equivalence of types of bifunctors given by currying.

                                                          Equations
                                                            Instances For
                                                              @[simp]
                                                              theorem CategoryTheory.Functor.curryingFlipEquiv_apply_obj {C : Type u₂} [Category.{v₂, u₂} C] {D : Type u₃} [Category.{v₃, u₃} D] {E : Type u₄} [Category.{v₄, u₄} E] (a✝ : Functor D (Functor C E)) (X : C × D) :
                                                              (curryingFlipEquiv a✝).obj X = (a✝.obj X.2).obj X.1
                                                              @[simp]
                                                              theorem CategoryTheory.Functor.curryingFlipEquiv_symm_apply_obj_obj {C : Type u₂} [Category.{v₂, u₂} C] {D : Type u₃} [Category.{v₃, u₃} D] {E : Type u₄} [Category.{v₄, u₄} E] (a✝ : Functor (C × D) E) (k : D) (j : C) :
                                                              ((curryingFlipEquiv.symm a✝).obj k).obj j = a✝.obj (j, k)
                                                              @[simp]
                                                              theorem CategoryTheory.Functor.curryingFlipEquiv_symm_apply_map_app {C : Type u₂} [Category.{v₂, u₂} C] {D : Type u₃} [Category.{v₃, u₃} D] {E : Type u₄} [Category.{v₄, u₄} E] (a✝ : Functor (C × D) E) {X✝ Y✝ : D} (f : X✝ Y✝) (j : C) :
                                                              @[simp]
                                                              theorem CategoryTheory.Functor.curryingFlipEquiv_symm_apply_obj_map {C : Type u₂} [Category.{v₂, u₂} C] {D : Type u₃} [Category.{v₃, u₃} D] {E : Type u₄} [Category.{v₄, u₄} E] (a✝ : Functor (C × D) E) (k : D) {X✝ Y✝ : C} (f : X✝ Y✝) :
                                                              @[simp]
                                                              theorem CategoryTheory.Functor.curryingFlipEquiv_apply_map {C : Type u₂} [Category.{v₂, u₂} C] {D : Type u₃} [Category.{v₃, u₃} D] {E : Type u₄} [Category.{v₄, u₄} E] (a✝ : Functor D (Functor C E)) {X Y : C × D} (f : X Y) :
                                                              (curryingFlipEquiv a✝).map f = CategoryStruct.comp ((a✝.map f.2).app X.1) ((a✝.obj Y.2).map f.1)