Vertex group #
This file defines the vertex group (aka isotropy group) of a groupoid at a vertex.
Implementation notes #
- The instance is defined "manually", instead of relying on
CategoryTheory.Aut.group
or usingCategoryTheory.inv
. - The multiplication order therefore matches the categorical one:
x * y = x ≫ y
. - The inverse is directly defined in terms of the groupoidal inverse:
x ⁻¹ = Groupoid.inv x
.
Tags #
isotropy, vertex group, groupoid
@[simp]
@[simp]
theorem
CategoryTheory.Groupoid.vertexGroup.inv_eq_inv
{C : Type u}
[Groupoid C]
(c : C)
(γ : c ⟶ c)
:
The inverse in the group is equal to the inverse given by CategoryTheory.inv
.
@[simp]
theorem
CategoryTheory.Groupoid.vertexGroupIsomOfMap_apply
{C : Type u}
[Groupoid C]
{c d : C}
(f : c ⟶ d)
(γ : c ⟶ c)
:
@[simp]
theorem
CategoryTheory.Groupoid.vertexGroupIsomOfMap_symm_apply
{C : Type u}
[Groupoid C]
{c d : C}
(f : c ⟶ d)
(δ : d ⟶ d)
:
def
CategoryTheory.Groupoid.vertexGroupIsomOfPath
{C : Type u}
[Groupoid C]
{c d : C}
(p : Quiver.Path c d)
:
A path in the groupoid defines an isomorphism between its endpoints.