Documentation

Mathlib.CategoryTheory.Idempotents.FunctorExtension

Extension of functors to the idempotent completion #

In this file, we construct an extension functorExtension₁ of functors C ⥤ Karoubi D to functors Karoubi C ⥤ Karoubi D. This results in an equivalence karoubiUniversal₁ C D : (C ⥤ Karoubi D) ≌ (Karoubi C ⥤ Karoubi D).

We also construct an extension functorExtension₂ of functors (C ⥤ D) ⥤ (Karoubi C ⥤ Karoubi D). Moreover, when D is idempotent complete, we get equivalences karoubiUniversal₂ C D : C ⥤ D ≌ Karoubi C ⥤ Karoubi D and karoubiUniversal C D : C ⥤ D ≌ Karoubi C ⥤ D.

theorem CategoryTheory.Idempotents.natTrans_eq {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] {F G : Functor (Karoubi C) D} (φ : F G) (P : Karoubi C) :
φ.app P = CategoryStruct.comp (F.map P.decompId_i) (CategoryStruct.comp (φ.app { X := P.X, p := CategoryStruct.id P.X, idem := }) (G.map P.decompId_p))

A natural transformation between functors Karoubi C ⥤ D is determined by its value on objects coming from C.

The canonical extension of a functor C ⥤ Karoubi D to a functor Karoubi C ⥤ Karoubi D

Equations
    Instances For
      @[simp]
      theorem CategoryTheory.Idempotents.FunctorExtension₁.obj_map_f {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] (F : Functor C (Karoubi D)) {X✝ Y✝ : Karoubi C} (f : X✝ Y✝) :
      ((obj F).map f).f = (F.map f.f).f

      Extension of a natural transformation φ between functors C ⥤ karoubi D to a natural transformation between the extension of these functors to karoubi C ⥤ karoubi D

      Equations
        Instances For
          @[simp]
          theorem CategoryTheory.Idempotents.FunctorExtension₁.map_app_f {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] {F G : Functor C (Karoubi D)} (φ : F G) (P : Karoubi C) :
          ((map φ).app P).f = CategoryStruct.comp (F.map P.p).f (φ.app P.X).f

          The canonical functor (C ⥤ Karoubi D) ⥤ (Karoubi C ⥤ Karoubi D)

          Equations
            Instances For

              The natural isomorphism expressing that functors Karoubi C ⥤ Karoubi D obtained using functorExtension₁ actually extends the original functors C ⥤ Karoubi D.

              Equations
                Instances For

                  The counit isomorphism of the equivalence (C ⥤ Karoubi D) ≌ (Karoubi C ⥤ Karoubi D).

                  Equations
                    Instances For

                      The equivalence of categories (C ⥤ Karoubi D) ≌ (Karoubi C ⥤ Karoubi D).

                      Equations
                        Instances For

                          Compatibility isomorphisms of functorExtension₁ with respect to the composition of functors.

                          Equations
                            Instances For

                              The canonical functor (C ⥤ D) ⥤ (Karoubi C ⥤ Karoubi D)

                              Equations
                                Instances For
                                  @[simp]
                                  theorem CategoryTheory.Idempotents.functorExtension₂_obj_map_f (C : Type u_1) (D : Type u_2) [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] (X : Functor C D) {X✝ Y✝ : Karoubi C} (f : X✝ Y✝) :
                                  (((functorExtension₂ C D).obj X).map f).f = X.map f.f
                                  @[simp]
                                  theorem CategoryTheory.Idempotents.functorExtension₂_map_app_f (C : Type u_1) (D : Type u_2) [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] {X✝ Y✝ : Functor C D} (f : X✝ Y✝) (P : Karoubi C) :
                                  (((functorExtension₂ C D).map f).app P).f = CategoryStruct.comp (f.app P.X) (Y✝.map P.p)

                                  The natural isomorphism expressing that functors Karoubi C ⥤ Karoubi D obtained using functorExtension₂ actually extends the original functors C ⥤ D.

                                  Equations
                                    Instances For

                                      The equivalence of categories (C ⥤ D) ≌ (Karoubi C ⥤ Karoubi D) when D is idempotent complete.

                                      Equations
                                        Instances For

                                          The extension of functors functor (C ⥤ D) ⥤ (Karoubi C ⥤ D) when D is idempotent complete.

                                          Equations
                                            Instances For

                                              The equivalence (C ⥤ D) ≌ (Karoubi C ⥤ D) when D is idempotent complete.

                                              Equations
                                                Instances For