Documentation

Mathlib.CategoryTheory.Limits.Shapes.ZeroObjects

Zero objects #

A category "has a zero object" if it has an object which is both initial and terminal. Having a zero object provides zero morphisms, as the unique morphisms factoring through the zero object; see CategoryTheory.Limits.Shapes.ZeroMorphisms.

References #

structure CategoryTheory.Limits.IsZero {C : Type u} [Category.{v, u} C] (X : C) :

An object X in a category is a zero object if for every object Y there is a unique morphism to : X → Y and a unique morphism from : Y → X.

This is a characteristic predicate for has_zero_object.

  • unique_to (Y : C) : Nonempty (Unique (X Y))

    there are unique morphisms to the object

  • unique_from (Y : C) : Nonempty (Unique (Y X))

    there are unique morphisms from the object

Instances For
    def CategoryTheory.Limits.IsZero.to_ {C : Type u} [Category.{v, u} C] {X : C} (h : IsZero X) (Y : C) :
    X Y

    If h : IsZero X, then h.to_ Y is a choice of unique morphism X → Y.

    Equations
      Instances For
        theorem CategoryTheory.Limits.IsZero.eq_to {C : Type u} [Category.{v, u} C] {X Y : C} (h : IsZero X) (f : X Y) :
        f = h.to_ Y
        theorem CategoryTheory.Limits.IsZero.to_eq {C : Type u} [Category.{v, u} C] {X Y : C} (h : IsZero X) (f : X Y) :
        h.to_ Y = f
        def CategoryTheory.Limits.IsZero.from_ {C : Type u} [Category.{v, u} C] {X : C} (h : IsZero X) (Y : C) :
        Y X

        If h : is_zero X, then h.from_ Y is a choice of unique morphism Y → X.

        Equations
          Instances For
            theorem CategoryTheory.Limits.IsZero.eq_from {C : Type u} [Category.{v, u} C] {X Y : C} (h : IsZero X) (f : Y X) :
            f = h.from_ Y
            theorem CategoryTheory.Limits.IsZero.from_eq {C : Type u} [Category.{v, u} C] {X Y : C} (h : IsZero X) (f : Y X) :
            h.from_ Y = f
            theorem CategoryTheory.Limits.IsZero.eq_of_src {C : Type u} [Category.{v, u} C] {X Y : C} (hX : IsZero X) (f g : X Y) :
            f = g
            theorem CategoryTheory.Limits.IsZero.eq_of_tgt {C : Type u} [Category.{v, u} C] {X Y : C} (hX : IsZero X) (f g : Y X) :
            f = g
            theorem CategoryTheory.Limits.IsZero.epi {C : Type u} [Category.{v, u} C] {X : C} (h : IsZero X) {Y : C} (f : Y X) :
            Epi f
            theorem CategoryTheory.Limits.IsZero.mono {C : Type u} [Category.{v, u} C] {X : C} (h : IsZero X) {Y : C} (f : X Y) :
            def CategoryTheory.Limits.IsZero.iso {C : Type u} [Category.{v, u} C] {X Y : C} (hX : IsZero X) (hY : IsZero Y) :
            X Y

            Any two zero objects are isomorphic.

            Equations
              Instances For

                A zero object is in particular initial.

                Equations
                  Instances For

                    A zero object is in particular terminal.

                    Equations
                      Instances For
                        def CategoryTheory.Limits.IsZero.isoIsInitial {C : Type u} [Category.{v, u} C] {X Y : C} (hX : IsZero X) (hY : IsInitial Y) :
                        X Y

                        The (unique) isomorphism between any initial object and the zero object.

                        Equations
                          Instances For
                            def CategoryTheory.Limits.IsZero.isoIsTerminal {C : Type u} [Category.{v, u} C] {X Y : C} (hX : IsZero X) (hY : IsTerminal Y) :
                            X Y

                            The (unique) isomorphism between any terminal object and the zero object.

                            Equations
                              Instances For
                                theorem CategoryTheory.Limits.IsZero.of_iso {C : Type u} [Category.{v, u} C] {X Y : C} (hY : IsZero Y) (e : X Y) :
                                theorem CategoryTheory.Functor.isZero {C : Type u} [Category.{v, u} C] {D : Type u'} [Category.{v', u'} D] (F : Functor C D) (hF : ∀ (X : C), Limits.IsZero (F.obj X)) :

                                A category "has a zero object" if it has an object which is both initial and terminal.

                                • zero : ∃ (X : C), IsZero X

                                  there exists a zero object

                                Instances

                                  Construct a Zero C for a category with a zero object. This can not be a global instance as it will trigger for every Zero C typeclass search.

                                  Equations
                                    Instances For

                                      Every zero object is isomorphic to the zero object.

                                      Equations
                                        Instances For
                                          theorem CategoryTheory.Limits.IsZero.obj {C : Type u} [Category.{v, u} C] {D : Type u'} [Category.{v', u'} D] [HasZeroObject D] {F : Functor C D} (hF : IsZero F) (X : C) :
                                          IsZero (F.obj X)

                                          There is a unique morphism from the zero object to any object X.

                                          Equations
                                            Instances For

                                              There is a unique morphism from any object X to the zero object.

                                              Equations
                                                Instances For

                                                  A zero object is in particular initial.

                                                  Equations
                                                    Instances For

                                                      A zero object is in particular terminal.

                                                      Equations
                                                        Instances For
                                                          @[instance 10]

                                                          A zero object is in particular initial.

                                                          @[instance 10]

                                                          A zero object is in particular terminal.

                                                          The (unique) isomorphism between any initial object and the zero object.

                                                          Equations
                                                            Instances For

                                                              The (unique) isomorphism between any terminal object and the zero object.

                                                              Equations
                                                                Instances For

                                                                  The (unique) isomorphism between the chosen initial object and the chosen zero object.

                                                                  Equations
                                                                    Instances For

                                                                      The (unique) isomorphism between the chosen terminal object and the chosen zero object.

                                                                      Equations
                                                                        Instances For