The category of bimodule objects over a pair of monoid objects. #
A bimodule object for a pair of monoid objects, all internal to some monoidal category.
- X : C
The underlying monoidal category
The left action of this bimodule object
- one_actLeft : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerRight Mon_Class.one self.X) self.actLeft = (CategoryTheory.MonoidalCategoryStruct.leftUnitor self.X).hom
- left_assoc : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerRight Mon_Class.mul self.X) self.actLeft = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.associator A.X A.X self.X).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerLeft A.X self.actLeft) self.actLeft)
The right action of this bimodule object
- actRight_one : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerLeft self.X Mon_Class.one) self.actRight = (CategoryTheory.MonoidalCategoryStruct.rightUnitor self.X).hom
- right_assoc : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerLeft self.X Mon_Class.mul) self.actRight = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.associator self.X B.X B.X).inv (CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerRight self.actRight B.X) self.actRight)
- middle_assoc : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerRight self.actLeft B.X) self.actRight = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.associator A.X self.X B.X).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerLeft A.X self.actRight) self.actLeft)
Instances For
A morphism of bimodule objects.
The morphism between
M
's monoidal category andN
's monoidal category- left_act_hom : CategoryTheory.CategoryStruct.comp M.actLeft self.hom = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerLeft A.X self.hom) N.actLeft
- right_act_hom : CategoryTheory.CategoryStruct.comp M.actRight self.hom = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerRight self.hom B.X) N.actRight
Instances For
The identity morphism on a bimodule object.
Equations
Instances For
Equations
Composition of bimodule object morphisms.
Equations
Instances For
Equations
Construct an isomorphism of bimodules by giving an isomorphism between the underlying objects and checking compatibility with left and right actions only in the forward direction.
Equations
Instances For
A monoid object as a bimodule over itself.
Equations
Instances For
Equations
The forgetful functor from bimodule objects to the ambient category.
Equations
Instances For
The underlying object of the tensor product of two bimodules.
Equations
Instances For
Left action for the tensor product of two bimodules.
Equations
Instances For
Right action for the tensor product of two bimodules.
Equations
Instances For
Tensor product of two bimodule objects as a bimodule object.
Equations
Instances For
Left whiskering for morphisms of bimodule objects.
Equations
Instances For
Right whiskering for morphisms of bimodule objects.
Equations
Instances For
An auxiliary morphism for the definition of the underlying morphism of the forward component of the associator isomorphism.
Equations
Instances For
The underlying morphism of the forward component of the associator isomorphism.
Equations
Instances For
An auxiliary morphism for the definition of the underlying morphism of the inverse component of the associator isomorphism.
Equations
Instances For
The underlying morphism of the inverse component of the associator isomorphism.
Equations
Instances For
The underlying morphism of the forward component of the left unitor isomorphism.
Equations
Instances For
The underlying morphism of the inverse component of the left unitor isomorphism.
Equations
Instances For
The underlying morphism of the forward component of the right unitor isomorphism.
Equations
Instances For
The underlying morphism of the inverse component of the right unitor isomorphism.
Equations
Instances For
The associator as a bimodule isomorphism.
Equations
Instances For
The left unitor as a bimodule isomorphism.
Equations
Instances For
The right unitor as a bimodule isomorphism.
Equations
Instances For
The bicategory of algebras (monoids) and bimodules, all internal to some monoidal category.