Documentation

Mathlib.CategoryTheory.Monoidal.Bimod

The category of bimodule objects over a pair of monoid objects. #

theorem id_tensor_π_preserves_coequalizer_inv_colimMap_desc {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] [CategoryTheory.MonoidalCategory C] [CategoryTheory.Limits.HasCoequalizers C] [∀ (X : C), CategoryTheory.Limits.PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (CategoryTheory.MonoidalCategory.tensorLeft X)] {X Y Z X' Y' Z' : C} (f g : X Y) (f' g' : X' Y') (p : CategoryTheory.MonoidalCategoryStruct.tensorObj Z X X') (q : CategoryTheory.MonoidalCategoryStruct.tensorObj Z Y Y') (wf : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerLeft Z f) q = CategoryTheory.CategoryStruct.comp p f') (wg : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerLeft Z g) q = CategoryTheory.CategoryStruct.comp p g') (h : Y' Z') (wh : CategoryTheory.CategoryStruct.comp f' h = CategoryTheory.CategoryStruct.comp g' h) :
theorem π_tensor_id_preserves_coequalizer_inv_colimMap_desc {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] [CategoryTheory.MonoidalCategory C] [CategoryTheory.Limits.HasCoequalizers C] [∀ (X : C), CategoryTheory.Limits.PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (CategoryTheory.MonoidalCategory.tensorRight X)] {X Y Z X' Y' Z' : C} (f g : X Y) (f' g' : X' Y') (p : CategoryTheory.MonoidalCategoryStruct.tensorObj X Z X') (q : CategoryTheory.MonoidalCategoryStruct.tensorObj Y Z Y') (wf : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerRight f Z) q = CategoryTheory.CategoryStruct.comp p f') (wg : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerRight g Z) q = CategoryTheory.CategoryStruct.comp p g') (h : Y' Z') (wh : CategoryTheory.CategoryStruct.comp f' h = CategoryTheory.CategoryStruct.comp g' h) :
structure Bimod {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] [CategoryTheory.MonoidalCategory C] (A B : Mon_ C) :
Type (max u₁ v₁)

A bimodule object for a pair of monoid objects, all internal to some monoidal category.

Instances For
    structure Bimod.Hom {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] [CategoryTheory.MonoidalCategory C] {A B : Mon_ C} (M N : Bimod A B) :
    Type v₁

    A morphism of bimodule objects.

    Instances For
      theorem Bimod.Hom.ext_iff {C : Type u₁} {inst✝ : CategoryTheory.Category.{v₁, u₁} C} {inst✝¹ : CategoryTheory.MonoidalCategory C} {A B : Mon_ C} {M N : Bimod A B} {x y : M.Hom N} :
      x = y x.hom = y.hom
      theorem Bimod.Hom.ext {C : Type u₁} {inst✝ : CategoryTheory.Category.{v₁, u₁} C} {inst✝¹ : CategoryTheory.MonoidalCategory C} {A B : Mon_ C} {M N : Bimod A B} {x y : M.Hom N} (hom : x.hom = y.hom) :
      x = y

      The identity morphism on a bimodule object.

      Equations
        Instances For
          def Bimod.comp {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] [CategoryTheory.MonoidalCategory C] {A B : Mon_ C} {M N O : Bimod A B} (f : M.Hom N) (g : N.Hom O) :
          M.Hom O

          Composition of bimodule object morphisms.

          Equations
            Instances For
              @[simp]
              theorem Bimod.hom_ext {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] [CategoryTheory.MonoidalCategory C] {A B : Mon_ C} {M N : Bimod A B} (f g : M N) (h : f.hom = g.hom) :
              f = g
              theorem Bimod.hom_ext_iff {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] [CategoryTheory.MonoidalCategory C] {A B : Mon_ C} {M N : Bimod A B} {f g : M N} :
              f = g f.hom = g.hom

              Construct an isomorphism of bimodules by giving an isomorphism between the underlying objects and checking compatibility with left and right actions only in the forward direction.

              Equations
                Instances For

                  A monoid object as a bimodule over itself.

                  Equations
                    Instances For

                      The forgetful functor from bimodule objects to the ambient category.

                      Equations
                        Instances For

                          The underlying object of the tensor product of two bimodules.

                          Equations
                            Instances For

                              The underlying morphism of the forward component of the left unitor isomorphism.

                              Equations
                                Instances For

                                  The underlying morphism of the inverse component of the left unitor isomorphism.

                                  Equations
                                    Instances For

                                      The underlying morphism of the forward component of the right unitor isomorphism.

                                      Equations
                                        Instances For

                                          The underlying morphism of the inverse component of the right unitor isomorphism.

                                          Equations
                                            Instances For