The category of bimonoids in a braided monoidal category. #
We define bimonoids in a braided monoidal category C
as comonoid objects in the category of monoid objects in C
.
We verify that this is equivalent to the monoid objects in the category of comonoid objects.
TODO #
- Construct the category of modules, and show that it is monoidal with a monoidal forgetful functor
to
C
. - Some form of Tannaka reconstruction:
given a monoidal functor
F : C ⥤ D
into a braided categoryD
, the internal endomorphisms ofF
form a bimonoid in presheaves onD
, in good circumstances this is representable by a bimonoid inD
, and thenC
is monoidally equivalent to the modules over that bimonoid.
A bimonoid object in a braided category C
is a object that is simultaneously monoid and comonoid
objects, and structure morphisms of them satisfy appropriate consistency conditions.
- mul_assoc : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerRight mul M) mul = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.associator M M M).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerLeft M mul) mul)
- comul_assoc : CategoryTheory.CategoryStruct.comp comul (CategoryTheory.MonoidalCategoryStruct.whiskerLeft M comul) = CategoryTheory.CategoryStruct.comp comul (CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerRight comul M) (CategoryTheory.MonoidalCategoryStruct.associator M M M).hom)
- mul_comul : CategoryTheory.CategoryStruct.comp Mon_Class.mul Comon_Class.comul = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.tensorHom Comon_Class.comul Comon_Class.comul) (CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.tensorμ M M M M) (CategoryTheory.MonoidalCategoryStruct.tensorHom Mon_Class.mul Mon_Class.mul))
Instances
The property that a morphism between bimonoid objects is a bimonoid morphism.
Instances
A bimonoid object in a braided category C
is a comonoid object in the (monoidal)
category of monoid objects in C
.
Equations
Instances For
Equations
The forgetful functor from bimonoid objects to monoid objects.
Equations
Instances For
The forgetful functor from bimonoid objects to the underlying category.
Equations
Instances For
The forgetful functor from bimonoid objects to comonoid objects.
Equations
Instances For
The object level part of the forward direction of Comon_ (Mon_ C) ≌ Mon_ (Comon_ C)
Equations
Instances For
The forward direction of Comon_ (Mon_ C) ≌ Mon_ (Comon_ C)
Equations
Instances For
Auxiliary definition for ofMon_Comon_Obj
.
Equations
Instances For
The object level part of the backward direction of Comon_ (Mon_ C) ≌ Mon_ (Comon_ C)
Equations
Instances For
The backward direction of Comon_ (Mon_ C) ≌ Mon_ (Comon_ C)
Equations
Instances For
Auxiliary definition for equivMon_Comon_UnitIsoApp
.
Equations
Instances For
Auxiliary definition for equivMon_Comon_UnitIsoApp
.
Equations
Instances For
The unit for the equivalence Comon_ (Mon_ C) ≌ Mon_ (Comon_ C)
.
Equations
Instances For
Auxiliary definition for equivMon_Comon_CounitIsoApp
.
Equations
Instances For
Auxiliary definition for equivMon_Comon_CounitIsoApp
.
Equations
Instances For
The counit for the equivalence Comon_ (Mon_ C) ≌ Mon_ (Comon_ C)
.
Equations
Instances For
The equivalence Comon_ (Mon_ C) ≌ Mon_ (Comon_ C)
Equations
Instances For
The trivial bimonoid #
The trivial bimonoid object.
Equations
Instances For
The bimonoid morphism from the trivial bimonoid to any bimonoid.
Equations
Instances For
The bimonoid morphism from any bimonoid to the trivial bimonoid.
Equations
Instances For
Additional lemmas #
Equations
Compatibility of the monoid and comonoid structures, in terms of morphisms in C
.
Auxiliary definition for Bimon_.mk'
.
Equations
Instances For
Construct an object of Bimon_ C
from an object X : C
and Bimon_Class X
instance.