Documentation

Mathlib.CategoryTheory.Monoidal.Center

Half braidings and the Drinfeld center of a monoidal category #

We define Center C to be pairs ⟨X, b⟩, where X : C and b is a half-braiding on X.

We show that Center C is braided monoidal, and provide the monoidal functor Center.forget from Center C back to C.

Implementation notes #

Verifying the various axioms directly requires tedious rewriting. Using the slice tactic may make the proofs marginally more readable.

More exciting, however, would be to make possible one of the following options:

  1. Integration with homotopy.io / globular to give "picture proofs".
  2. The monoidal coherence theorem, so we can ignore associators (after which most of these proofs are trivial).
  3. Automating these proofs using rewrite_search or some relative.

In this file, we take the second approach using the monoidal composition ⊗≫ and the coherence tactic.

structure CategoryTheory.HalfBraiding {C : Type u₁} [Category.{v₁, u₁} C] [MonoidalCategory C] (X : C) :
Type (max u₁ v₁)

A half-braiding on X : C is a family of isomorphisms X ⊗ U ≅ U ⊗ X, monoidally natural in U : C.

Thinking of C as a 2-category with a single 0-morphism, these are the same as natural transformations (in the pseudo- sense) of the identity 2-functor on C, which send the unique 0-morphism to X.

Instances For
    def CategoryTheory.Center (C : Type u₁) [Category.{v₁, u₁} C] [MonoidalCategory C] :
    Type (max u₁ u₁ v₁)

    The Drinfeld center of a monoidal category C has as objects pairs ⟨X, b⟩, where X : C and b is a half-braiding on X.

    Equations
      Instances For

        A morphism in the Drinfeld center of C.

        Instances For
          theorem CategoryTheory.Center.Hom.ext_iff {C : Type u₁} {inst✝ : Category.{v₁, u₁} C} {inst✝¹ : MonoidalCategory C} {X Y : Center C} {x y : X.Hom Y} :
          x = y x.f = y.f
          theorem CategoryTheory.Center.Hom.ext {C : Type u₁} {inst✝ : Category.{v₁, u₁} C} {inst✝¹ : MonoidalCategory C} {X Y : Center C} {x y : X.Hom Y} (f : x.f = y.f) :
          x = y
          theorem CategoryTheory.Center.ext {C : Type u₁} [Category.{v₁, u₁} C] [MonoidalCategory C] {X Y : Center C} (f g : X Y) (w : f.f = g.f) :
          f = g
          theorem CategoryTheory.Center.ext_iff {C : Type u₁} [Category.{v₁, u₁} C] [MonoidalCategory C] {X Y : Center C} {f g : X Y} :
          f = g f.f = g.f
          @[simp]
          theorem CategoryTheory.Center.comp_f {C : Type u₁} [Category.{v₁, u₁} C] [MonoidalCategory C] {X Y Z : Center C} (f : X Y) (g : Y Z) :
          def CategoryTheory.Center.isoMk {C : Type u₁} [Category.{v₁, u₁} C] [MonoidalCategory C] {X Y : Center C} (f : X Y) [IsIso f.f] :
          X Y

          Construct an isomorphism in the Drinfeld center from a morphism whose underlying morphism is an isomorphism.

          Equations
            Instances For
              @[simp]
              theorem CategoryTheory.Center.isoMk_hom {C : Type u₁} [Category.{v₁, u₁} C] [MonoidalCategory C] {X Y : Center C} (f : X Y) [IsIso f.f] :
              (isoMk f).hom = f
              @[simp]
              theorem CategoryTheory.Center.isoMk_inv_f {C : Type u₁} [Category.{v₁, u₁} C] [MonoidalCategory C] {X Y : Center C} (f : X Y) [IsIso f.f] :
              (isoMk f).inv.f = inv f.f

              Auxiliary definition for the MonoidalCategory instance on Center C.

              Equations
                Instances For
                  def CategoryTheory.Center.whiskerLeft {C : Type u₁} [Category.{v₁, u₁} C] [MonoidalCategory C] (X : Center C) {Y₁ Y₂ : Center C} (f : Y₁ Y₂) :
                  X.tensorObj Y₁ X.tensorObj Y₂

                  Auxiliary definition for the MonoidalCategory instance on Center C.

                  Equations
                    Instances For
                      def CategoryTheory.Center.whiskerRight {C : Type u₁} [Category.{v₁, u₁} C] [MonoidalCategory C] {X₁ X₂ : Center C} (f : X₁ X₂) (Y : Center C) :
                      X₁.tensorObj Y X₂.tensorObj Y

                      Auxiliary definition for the MonoidalCategory instance on Center C.

                      Equations
                        Instances For
                          def CategoryTheory.Center.tensorHom {C : Type u₁} [Category.{v₁, u₁} C] [MonoidalCategory C] {X₁ Y₁ X₂ Y₂ : Center C} (f : X₁ Y₁) (g : X₂ Y₂) :
                          X₁.tensorObj X₂ Y₁.tensorObj Y₂

                          Auxiliary definition for the MonoidalCategory instance on Center C.

                          Equations
                            Instances For
                              @[simp]
                              theorem CategoryTheory.Center.tensorHom_f {C : Type u₁} [Category.{v₁, u₁} C] [MonoidalCategory C] {X₁ Y₁ X₂ Y₂ : Center C} (f : X₁ Y₁) (g : X₂ Y₂) :

                              Auxiliary definition for the MonoidalCategory instance on Center C.

                              Equations
                                Instances For

                                  Auxiliary definition for the MonoidalCategory instance on Center C.

                                  Equations
                                    Instances For

                                      Auxiliary definition for the MonoidalCategory instance on Center C.

                                      Equations
                                        Instances For

                                          Auxiliary definition for the MonoidalCategory instance on Center C.

                                          Equations
                                            Instances For
                                              @[simp]
                                              theorem CategoryTheory.Center.tensor_f {C : Type u₁} [Category.{v₁, u₁} C] [MonoidalCategory C] {X₁ Y₁ X₂ Y₂ : Center C} (f : X₁ Y₁) (g : X₂ Y₂) :

                                              The forgetful monoidal functor from the Drinfeld center to the original category.

                                              Equations
                                                Instances For
                                                  @[simp]
                                                  theorem CategoryTheory.Center.forget_map (C : Type u₁) [Category.{v₁, u₁} C] [MonoidalCategory C] {X✝ Y✝ : Center C} (f : X✝ Y✝) :
                                                  (forget C).map f = f.f

                                                  Auxiliary definition for the BraidedCategory instance on Center C.

                                                  Equations
                                                    Instances For

                                                      Auxiliary construction for ofBraided.

                                                      Equations
                                                        Instances For

                                                          The functor lifting a braided category to its center, using the braiding as the half-braiding.

                                                          Equations
                                                            Instances For
                                                              @[simp]
                                                              theorem CategoryTheory.Center.ofBraided_map_f (C : Type u₁) [Category.{v₁, u₁} C] [MonoidalCategory C] [BraidedCategory C] {X✝ Y✝ : C} (f : X✝ Y✝) :
                                                              ((ofBraided C).map f).f = f