Documentation

Mathlib.CategoryTheory.Monoidal.FunctorCategory

Monoidal structure on C ⥤ D when D is monoidal. #

When C is any category, and D is a monoidal category, there is a natural "pointwise" monoidal structure on C ⥤ D.

The initial intended application is tensor product of presheaves.

(An auxiliary definition for functorCategoryMonoidal.) Tensor product of functors C ⥤ D, when D is monoidal.

Equations
    Instances For
      @[simp]
      theorem CategoryTheory.Monoidal.FunctorCategory.tensorObj_map {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] [MonoidalCategory D] (F G : Functor C D) {X✝ Y✝ : C} (f : X✝ Y✝) :
      def CategoryTheory.Monoidal.FunctorCategory.tensorHom {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] [MonoidalCategory D] {F G F' G' : Functor C D} (α : F G) (β : F' G') :

      (An auxiliary definition for functorCategoryMonoidal.) Tensor product of natural transformations into D, when D is monoidal.

      Equations
        Instances For
          @[simp]
          theorem CategoryTheory.Monoidal.FunctorCategory.tensorHom_app {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] [MonoidalCategory D] {F G F' G' : Functor C D} (α : F G) (β : F' G') (X : C) :

          (An auxiliary definition for functorCategoryMonoidal.)

          Equations
            Instances For

              (An auxiliary definition for functorCategoryMonoidal.)

              Equations
                Instances For

                  When C is any category, and D is a monoidal category, the functor category C ⥤ D has a natural pointwise monoidal structure, where (F ⊗ G).obj X = F.obj X ⊗ G.obj X.

                  Equations
                    @[simp]
                    theorem CategoryTheory.Monoidal.tensorHom_app {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] [MonoidalCategory D] {F G F' G' : Functor C D} {α : F G} {β : F' G'} {X : C} :

                    When C is any category, and D is a monoidal category, the functor category C ⥤ D has a natural pointwise monoidal structure, where (F ⊗ G).obj X = F.obj X ⊗ G.obj X.

                    Equations

                      When C is any category, and D is a braided monoidal category, the natural pointwise monoidal structure on the functor category C ⥤ D is also braided.

                      Equations

                        When C is any category, and D is a symmetric monoidal category, the natural pointwise monoidal structure on the functor category C ⥤ D is also symmetric.

                        Equations