Documentation

Mathlib.CategoryTheory.Monoidal.Mod_

The category of module objects over a monoid object. #

The action map

Equations
    Instances For

      The action map

      Equations
        Instances For

          The action map

          Equations
            Instances For
              @[reducible, inline]

              The action of a monoid object on itself.

              Equations
                Instances For

                  If C acts monoidally on D, then every object of D is canonically a module over the trivial monoid.

                  Equations
                    theorem Mod_Class.ext {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] [CategoryTheory.MonoidalCategory C] {M : C} [Mon_Class M] {X : C} (h₁ h₂ : Mod_Class M X) (H : smul = smul) :
                    h₁ = h₂
                    theorem Mod_Class.ext_iff {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] [CategoryTheory.MonoidalCategory C] {M : C} [Mon_Class M] {X : C} {h₁ h₂ : Mod_Class M X} :
                    h₁ = h₂ smul = smul

                    A module object for a monoid object in a monoidal category acting on the ambient category.

                    • X : D

                      The underlying object in the ambient category

                    • mod : Mod_Class A self.X
                    Instances For

                      A morphism of module objects.

                      Instances For
                        theorem Mod_.Hom.ext {C : Type u₁} {inst✝ : CategoryTheory.Category.{v₁, u₁} C} {inst✝¹ : CategoryTheory.MonoidalCategory C} {D : Type u₂} {inst✝² : CategoryTheory.Category.{v₂, u₂} D} {inst✝³ : CategoryTheory.MonoidalCategory.MonoidalLeftAction C D} {A : C} {inst✝⁴ : Mon_Class A} {M N : Mod_ D A} {x y : M.Hom N} (hom : x.hom = y.hom) :
                        x = y
                        theorem Mod_.Hom.ext_iff {C : Type u₁} {inst✝ : CategoryTheory.Category.{v₁, u₁} C} {inst✝¹ : CategoryTheory.MonoidalCategory C} {D : Type u₂} {inst✝² : CategoryTheory.Category.{v₂, u₂} D} {inst✝³ : CategoryTheory.MonoidalCategory.MonoidalLeftAction C D} {A : C} {inst✝⁴ : Mon_Class A} {M N : Mod_ D A} {x y : M.Hom N} :
                        x = y x.hom = y.hom

                        An alternative constructor for Hom, taking a morphism without a [isMod_Hom] instance, as well as the relevant equality to put such an instance.

                        Equations
                          Instances For

                            An alternative constructor for Hom, taking a morphism without a [isMod_Hom] instance, between objects with a Mod_Class instance (rather than bundled as Mod_), as well as the relevant equality to put such an instance.

                            Equations
                              Instances For

                                The identity morphism on a module object.

                                Equations
                                  Instances For

                                    Composition of module object morphisms.

                                    Equations
                                      Instances For

                                        A monoid object as a module over itself.

                                        Equations
                                          Instances For

                                            The forgetful functor from module objects to the ambient category.

                                            Equations
                                              Instances For

                                                When M is a B-module in D and f : A ⟶ B is a morphism of internal monoid objects, M inherits an A-module structure via "restriction of scalars", i.e γ[A, M] = f.hom ⊵ₗ M ≫ γ[B, M].

                                                Equations
                                                  Instances For

                                                    If g : M ⟶ N is a B-linear morphisms of B-modules, then it induces an A-linear morphism when M and N have an A-module structure obtained by restricting scalars along a monoid morphism A ⟶ B.

                                                    A morphism of monoid objects induces a "restriction" or "comap" functor between the categories of module objects.

                                                    Equations
                                                      Instances For