Documentation

Mathlib.CategoryTheory.Monoidal.Opposite

Monoidal opposites #

We write Cᵐᵒᵖ for the monoidal opposite of a monoidal category C.

structure CategoryTheory.MonoidalOpposite (C : Type u₁) :
Type u₁

The type of objects of the opposite (or "reverse") monoidal category. Use the notation Cᴹᵒᵖ.

Instances For

    The type of objects of the opposite (or "reverse") monoidal category. Use the notation Cᴹᵒᵖ.

    Equations
      Instances For
        theorem CategoryTheory.MonoidalOpposite.mop_inj_iff {C : Type u₁} (x y : C) :
        { unmop := x } = { unmop := y } x = y
        @[simp]
        theorem CategoryTheory.MonoidalOpposite.mop_unmop {C : Type u₁} (X : Cᴹᵒᵖ) :
        { unmop := X.unmop } = X
        theorem CategoryTheory.MonoidalOpposite.unmop_mop {C : Type u₁} (X : C) :
        { unmop := X }.unmop = X
        def Quiver.Hom.mop {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X Y : C} (f : X Y) :
        { unmop := X } { unmop := Y }

        The monoidal opposite of a morphism f : X ⟶ Y is just f, thought of as mop X ⟶ mop Y.

        Equations
          Instances For

            We can think of a morphism f : mop X ⟶ mop Y as a morphism X ⟶ Y.

            Equations
              Instances For
                @[simp]
                theorem Quiver.Hom.unmop_mop {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X Y : C} {f : X Y} :
                f.mop.unmop = f
                @[simp]
                theorem Quiver.Hom.mop_unmop {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X Y : Cᴹᵒᵖ} {f : X Y} :
                f.unmop.mop = f
                @[simp]
                theorem CategoryTheory.mop_comp {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : C} {f : X Y} {g : Y Z} :
                @[simp]
                @[simp]

                The identity functor on C, viewed as a functor from C to its monoidal opposite.

                Equations
                  Instances For
                    @[simp]
                    theorem CategoryTheory.mopFunctor_map (C : Type u₁) [Category.{v₁, u₁} C] {X✝ Y✝ : C} (f : X✝ Y✝) :
                    @[simp]
                    theorem CategoryTheory.mopFunctor_obj (C : Type u₁) [Category.{v₁, u₁} C] (unmop : C) :
                    (mopFunctor C).obj unmop = { unmop := unmop }

                    The identity functor on C, viewed as a functor from the monoidal opposite of C to C.

                    Equations
                      Instances For
                        @[simp]
                        @[simp]
                        theorem CategoryTheory.unmopFunctor_map (C : Type u₁) [Category.{v₁, u₁} C] {X✝ Y✝ : Cᴹᵒᵖ} (f : X✝ Y✝) :
                        @[reducible, inline]
                        abbrev CategoryTheory.Iso.mop {C : Type u₁} [Category.{v₁, u₁} C] {X Y : C} (f : X Y) :
                        { unmop := X } { unmop := Y }

                        An isomorphism in C gives an isomorphism in Cᴹᵒᵖ.

                        Equations
                          Instances For
                            @[reducible, inline]
                            abbrev CategoryTheory.Iso.unmop {C : Type u₁} [Category.{v₁, u₁} C] {X Y : Cᴹᵒᵖ} (f : X Y) :

                            An isomorphism in Cᴹᵒᵖ gives an isomorphism in C.

                            Equations
                              Instances For
                                @[simp]
                                theorem CategoryTheory.op_tensorHom {C : Type u₁} [Category.{v₁, u₁} C] [MonoidalCategory C] {X₁ Y₁ X₂ Y₂ : C} (f : X₁ Y₁) (g : X₂ Y₂) :
                                @[simp]
                                theorem CategoryTheory.unop_tensorHom {C : Type u₁} [Category.{v₁, u₁} C] [MonoidalCategory C] {X₁ Y₁ X₂ Y₂ : Cᵒᵖ} (f : X₁ Y₁) (g : X₂ Y₂) :
                                @[simp]
                                theorem CategoryTheory.mop_tensorHom {C : Type u₁} [Category.{v₁, u₁} C] [MonoidalCategory C] {X₁ Y₁ X₂ Y₂ : C} (f : X₁ Y₁) (g : X₂ Y₂) :
                                @[simp]
                                @[simp]

                                The (identity) equivalence between C and its monoidal opposite.

                                Equations
                                  Instances For

                                    The (identity) equivalence between Cᴹᵒᵖ and C.

                                    Equations
                                      Instances For
                                        @[simp]

                                        The equivalence between C and its monoidal opposite's monoidal opposite.

                                        Equations
                                          Instances For

                                            The identification mop X ⊗ mop Y = mop (Y ⊗ X) as a natural isomorphism.

                                            Equations
                                              Instances For

                                                The identification X ⊗ - = mop (- ⊗ unmop X) as a natural isomorphism.

                                                Equations
                                                  Instances For

                                                    The identification mop X ⊗ - = mop (- ⊗ X) as a natural isomorphism.

                                                    Equations
                                                      Instances For

                                                        The identification unmop X ⊗ - = unmop (mop - ⊗ X) as a natural isomorphism.

                                                        Equations
                                                          Instances For

                                                            The identification - ⊗ X = mop (unmop X ⊗ -) as a natural isomorphism.

                                                            Equations
                                                              Instances For

                                                                The identification - ⊗ mop X = mop (- ⊗ unmop X) as a natural isomorphism.

                                                                Equations
                                                                  Instances For

                                                                    The identification - ⊗ unmop X = unmop (X ⊗ mop -) as a natural isomorphism.

                                                                    Equations
                                                                      Instances For
                                                                        @[deprecated CategoryTheory.monoidalOpOp_η (since := "2025-06-08")]

                                                                        Alias of CategoryTheory.monoidalOpOp_η.

                                                                        @[deprecated CategoryTheory.monoidalUnopUnop_ε (since := "2025-06-08")]

                                                                        Alias of CategoryTheory.monoidalUnopUnop_ε.

                                                                        @[deprecated CategoryTheory.monoidalOpOp_μ (since := "2025-06-08")]

                                                                        Alias of CategoryTheory.monoidalOpOp_μ.

                                                                        @[deprecated CategoryTheory.monoidalOpOp_δ (since := "2025-06-08")]

                                                                        Alias of CategoryTheory.monoidalOpOp_δ.

                                                                        @[deprecated CategoryTheory.monoidalUnopUnop_μ (since := "2025-06-08")]

                                                                        Alias of CategoryTheory.monoidalUnopUnop_μ.

                                                                        @[deprecated CategoryTheory.monoidalUnopUnop_δ (since := "2025-06-08")]

                                                                        Alias of CategoryTheory.monoidalUnopUnop_δ.