Documentation

Mathlib.CategoryTheory.ObjectProperty.ClosedUnderIsomorphisms

Properties of objects which are closed under isomorphisms #

Given a category C and P : ObjectProperty C (i.e. P : C → Prop), this file introduces the type class P.IsClosedUnderIsomorphisms.

A predicate C → Prop on the objects of a category is closed under isomorphisms if whenever P X, then all the objects Y that are isomorphic to X also satisfy P Y.

  • of_iso {X Y : C} : ∀ (x : X Y), P XP Y
Instances
    @[deprecated CategoryTheory.ObjectProperty.IsClosedUnderIsomorphisms (since := "2025-02-25")]

    Alias of CategoryTheory.ObjectProperty.IsClosedUnderIsomorphisms.


    A predicate C → Prop on the objects of a category is closed under isomorphisms if whenever P X, then all the objects Y that are isomorphic to X also satisfy P Y.

    Equations
      Instances For
        theorem CategoryTheory.ObjectProperty.prop_of_iso {C : Type u} [Category.{v, u} C] (P : ObjectProperty C) [P.IsClosedUnderIsomorphisms] {X Y : C} (e : X Y) (hX : P X) :
        P Y
        theorem CategoryTheory.ObjectProperty.prop_of_isIso {C : Type u} [Category.{v, u} C] (P : ObjectProperty C) [P.IsClosedUnderIsomorphisms] {X Y : C} (f : X Y) [IsIso f] (hX : P X) :
        P Y

        The closure by isomorphisms of a predicate on objects in a category.

        Equations
          Instances For
            theorem CategoryTheory.ObjectProperty.prop_isoClosure {C : Type u} [Category.{v, u} C] {P : ObjectProperty C} {X Y : C} (h : P X) (e : X Y) [IsIso e] :
            @[deprecated CategoryTheory.ObjectProperty.prop_of_iso (since := "2025-02-25")]
            theorem CategoryTheory.mem_of_iso {C : Type u} [Category.{v, u} C] (P : ObjectProperty C) [P.IsClosedUnderIsomorphisms] {X Y : C} (e : X Y) (hX : P X) :
            P Y

            Alias of CategoryTheory.ObjectProperty.prop_of_iso.

            @[deprecated CategoryTheory.ObjectProperty.prop_iff_of_iso (since := "2025-02-25")]
            theorem CategoryTheory.mem_iff_of_iso {C : Type u} [Category.{v, u} C] (P : ObjectProperty C) [P.IsClosedUnderIsomorphisms] {X Y : C} (e : X Y) :
            P X P Y

            Alias of CategoryTheory.ObjectProperty.prop_iff_of_iso.

            @[deprecated CategoryTheory.ObjectProperty.prop_of_isIso (since := "2025-02-25")]
            theorem CategoryTheory.mem_of_isIso {C : Type u} [Category.{v, u} C] (P : ObjectProperty C) [P.IsClosedUnderIsomorphisms] {X Y : C} (f : X Y) [IsIso f] (hX : P X) :
            P Y

            Alias of CategoryTheory.ObjectProperty.prop_of_isIso.

            @[deprecated CategoryTheory.ObjectProperty.prop_iff_of_isIso (since := "2025-02-25")]
            theorem CategoryTheory.mem_iff_of_isIso {C : Type u} [Category.{v, u} C] (P : ObjectProperty C) [P.IsClosedUnderIsomorphisms] {X Y : C} (f : X Y) [IsIso f] :
            P X P Y

            Alias of CategoryTheory.ObjectProperty.prop_iff_of_isIso.

            @[deprecated CategoryTheory.ObjectProperty.isoClosure (since := "2025-02-25")]

            Alias of CategoryTheory.ObjectProperty.isoClosure.


            The closure by isomorphisms of a predicate on objects in a category.

            Equations
              Instances For
                @[deprecated CategoryTheory.ObjectProperty.prop_isoClosure_iff (since := "2025-02-25")]

                Alias of CategoryTheory.ObjectProperty.prop_isoClosure_iff.

                @[deprecated CategoryTheory.ObjectProperty.prop_isoClosure (since := "2025-02-25")]
                theorem CategoryTheory.mem_isoClosure {C : Type u} [Category.{v, u} C] {P : ObjectProperty C} {X Y : C} (h : P X) (e : X Y) [IsIso e] :

                Alias of CategoryTheory.ObjectProperty.prop_isoClosure.