The empty category #
Defines a category structure on PEmpty
, and the unique functor PEmpty ⥤ C
for any category C
.
def
CategoryTheory.functorOfIsEmpty
(C : Type u)
[Category.{v, u} C]
(D : Type u')
[Category.{v', u'} D]
[IsEmpty C]
:
Functor C D
The (unique) functor from an empty category.
Equations
Instances For
def
CategoryTheory.Functor.isEmptyExt
{C : Type u}
[Category.{v, u} C]
{D : Type u'}
[Category.{v', u'} D]
[IsEmpty C]
(F G : Functor C D)
:
Any two functors out of an empty category are isomorphic.
Equations
Instances For
def
CategoryTheory.equivalenceOfIsEmpty
(C : Type u)
[Category.{v, u} C]
(D : Type u')
[Category.{v', u'} D]
[IsEmpty C]
[IsEmpty D]
:
The equivalence between two empty categories.
Equations
Instances For
Equivalence between two empty categories.
Equations
Instances For
The canonical functor out of the empty category.
Equations
Instances For
def
CategoryTheory.Functor.emptyExt
{C : Type u}
[Category.{v, u} C]
(F G : Functor (Discrete PEmpty.{w + 1}) C)
:
Any two functors out of the empty category are isomorphic.
Equations
Instances For
def
CategoryTheory.Functor.uniqueFromEmpty
{C : Type u}
[Category.{v, u} C]
(F : Functor (Discrete PEmpty.{w + 1}) C)
:
Any functor out of the empty category is isomorphic to the canonical functor from the empty category.
Equations
Instances For
theorem
CategoryTheory.Functor.empty_ext'
{C : Type u}
[Category.{v, u} C]
(F G : Functor (Discrete PEmpty.{w + 1}) C)
:
Any two functors out of the empty category are equal. You probably want to use
emptyExt
instead of this.