Documentation

Mathlib.CategoryTheory.Pi.Basic

Categories of indexed families of objects. #

We define the pointwise category structure on indexed families of objects in a category (and also the dependent generalization).

instance CategoryTheory.pi {I : Type w₀} (C : IType u₁) [(i : I) → Category.{v₁, u₁} (C i)] :

pi C gives the cartesian product of an indexed family of categories.

Equations
    @[simp]
    theorem CategoryTheory.Pi.id_apply {I : Type w₀} (C : IType u₁) [(i : I) → Category.{v₁, u₁} (C i)] (X : (i : I) → C i) (i : I) :
    @[simp]
    theorem CategoryTheory.Pi.comp_apply {I : Type w₀} (C : IType u₁) [(i : I) → Category.{v₁, u₁} (C i)] {X Y Z : (i : I) → C i} (f : X Y) (g : Y Z) (i : I) :
    theorem CategoryTheory.Pi.ext {I : Type w₀} (C : IType u₁) [(i : I) → Category.{v₁, u₁} (C i)] {X Y : (i : I) → C i} {f g : X Y} (w : ∀ (i : I), f i = g i) :
    f = g
    theorem CategoryTheory.Pi.ext_iff {I : Type w₀} {C : IType u₁} [(i : I) → Category.{v₁, u₁} (C i)] {X Y : (i : I) → C i} {f g : X Y} :
    f = g ∀ (i : I), f i = g i
    def CategoryTheory.Pi.eval {I : Type w₀} (C : IType u₁) [(i : I) → Category.{v₁, u₁} (C i)] (i : I) :
    Functor ((i : I) → C i) (C i)

    The evaluation functor at i : I, sending an I-indexed family of objects to the object over i.

    Equations
      Instances For
        @[simp]
        theorem CategoryTheory.Pi.eval_map {I : Type w₀} (C : IType u₁) [(i : I) → Category.{v₁, u₁} (C i)] (i : I) {X✝ Y✝ : (i : I) → C i} (α : X✝ Y✝) :
        (eval C i).map α = α i
        @[simp]
        theorem CategoryTheory.Pi.eval_obj {I : Type w₀} (C : IType u₁) [(i : I) → Category.{v₁, u₁} (C i)] (i : I) (f : (i : I) → C i) :
        (eval C i).obj f = f i
        instance CategoryTheory.Pi.instCategoryComp {I : Type w₀} (C : IType u₁) [(i : I) → Category.{v₁, u₁} (C i)] {J : Type w₁} (f : JI) (j : J) :
        Equations
          def CategoryTheory.Pi.comap {I : Type w₀} (C : IType u₁) [(i : I) → Category.{v₁, u₁} (C i)] {J : Type w₁} (h : JI) :
          Functor ((i : I) → C i) ((j : J) → C (h j))

          Pull back an I-indexed family of objects to a J-indexed family, along a function J → I.

          Equations
            Instances For
              @[simp]
              theorem CategoryTheory.Pi.comap_obj {I : Type w₀} (C : IType u₁) [(i : I) → Category.{v₁, u₁} (C i)] {J : Type w₁} (h : JI) (f : (i : I) → C i) (i : J) :
              (comap C h).obj f i = f (h i)
              @[simp]
              theorem CategoryTheory.Pi.comap_map {I : Type w₀} (C : IType u₁) [(i : I) → Category.{v₁, u₁} (C i)] {J : Type w₁} (h : JI) {X✝ Y✝ : (i : I) → C i} (α : X✝ Y✝) (i : J) :
              (comap C h).map α i = α (h i)
              def CategoryTheory.Pi.comapId (I : Type w₀) (C : IType u₁) [(i : I) → Category.{v₁, u₁} (C i)] :
              comap C id Functor.id ((i : I) → C i)

              The natural isomorphism between pulling back a grading along the identity function, and the identity functor.

              Equations
                Instances For
                  @[simp]
                  theorem CategoryTheory.Pi.comapId_hom_app (I : Type w₀) (C : IType u₁) [(i : I) → Category.{v₁, u₁} (C i)] (X : (i : I) → C i) (i : I) :
                  @[simp]
                  theorem CategoryTheory.Pi.comapId_inv_app (I : Type w₀) (C : IType u₁) [(i : I) → Category.{v₁, u₁} (C i)] (X : (i : I) → C i) (i : I) :
                  def CategoryTheory.Pi.comapComp {I : Type w₀} (C : IType u₁) [(i : I) → Category.{v₁, u₁} (C i)] {J : Type w₁} {K : Type w₂} (f : KJ) (g : JI) :
                  (comap C g).comp (comap (C g) f) comap C (g f)

                  The natural isomorphism comparing between pulling back along two successive functions, and pulling back along their composition

                  Equations
                    Instances For
                      @[simp]
                      theorem CategoryTheory.Pi.comapComp_hom_app {I : Type w₀} (C : IType u₁) [(i : I) → Category.{v₁, u₁} (C i)] {J : Type w₁} {K : Type w₂} (f : KJ) (g : JI) (X : (i : I) → C i) (b : K) :
                      (comapComp C f g).hom.app X b = CategoryStruct.id (X (g (f b)))
                      @[simp]
                      theorem CategoryTheory.Pi.comapComp_inv_app {I : Type w₀} (C : IType u₁) [(i : I) → Category.{v₁, u₁} (C i)] {J : Type w₁} {K : Type w₂} (f : KJ) (g : JI) (X : (i : I) → C i) (b : K) :
                      (comapComp C f g).inv.app X b = CategoryStruct.id (X (g (f b)))
                      def CategoryTheory.Pi.comapEvalIsoEval {I : Type w₀} (C : IType u₁) [(i : I) → Category.{v₁, u₁} (C i)] {J : Type w₁} (h : JI) (j : J) :
                      (comap C h).comp (eval (C h) j) eval C (h j)

                      The natural isomorphism between pulling back then evaluating, and just evaluating.

                      Equations
                        Instances For
                          @[simp]
                          theorem CategoryTheory.Pi.comapEvalIsoEval_inv_app {I : Type w₀} (C : IType u₁) [(i : I) → Category.{v₁, u₁} (C i)] {J : Type w₁} (h : JI) (j : J) (X : (i : I) → C i) :
                          @[simp]
                          theorem CategoryTheory.Pi.comapEvalIsoEval_hom_app {I : Type w₀} (C : IType u₁) [(i : I) → Category.{v₁, u₁} (C i)] {J : Type w₁} (h : JI) (j : J) (X : (i : I) → C i) :
                          instance CategoryTheory.Pi.sumElimCategory {I : Type w₀} (C : IType u₁) [(i : I) → Category.{v₁, u₁} (C i)] {J : Type w₀} {D : JType u₁} [(j : J) → Category.{v₁, u₁} (D j)] (s : I J) :
                          Equations
                            def CategoryTheory.Pi.sum {I : Type w₀} (C : IType u₁) [(i : I) → Category.{v₁, u₁} (C i)] {J : Type w₀} {D : JType u₁} [(j : J) → Category.{v₁, u₁} (D j)] :
                            Functor ((i : I) → C i) (Functor ((j : J) → D j) ((s : I J) → Sum.elim C D s))

                            The bifunctor combining an I-indexed family of objects with a J-indexed family of objects to obtain an I ⊕ J-indexed family of objects.

                            Equations
                              Instances For
                                @[simp]
                                theorem CategoryTheory.Pi.sum_map_app {I : Type w₀} (C : IType u₁) [(i : I) → Category.{v₁, u₁} (C i)] {J : Type w₀} {D : JType u₁} [(j : J) → Category.{v₁, u₁} (D j)] {X X' : (i : I) → C i} (f : X X') (Y : (j : J) → D j) (s : I J) :
                                ((sum C).map f).app Y s = match s with | Sum.inl i => f i | Sum.inr j => CategoryStruct.id (Y j)
                                @[simp]
                                theorem CategoryTheory.Pi.sum_obj_obj {I : Type w₀} (C : IType u₁) [(i : I) → Category.{v₁, u₁} (C i)] {J : Type w₀} {D : JType u₁} [(j : J) → Category.{v₁, u₁} (D j)] (X : (i : I) → C i) (Y : (j : J) → D j) (s : I J) :
                                ((sum C).obj X).obj Y s = match s with | Sum.inl i => X i | Sum.inr j => Y j
                                @[simp]
                                theorem CategoryTheory.Pi.sum_obj_map {I : Type w₀} (C : IType u₁) [(i : I) → Category.{v₁, u₁} (C i)] {J : Type w₀} {D : JType u₁} [(j : J) → Category.{v₁, u₁} (D j)] (X : (i : I) → C i) {x✝ x✝¹ : (j : J) → D j} (f : x✝ x✝¹) (s : I J) :
                                ((sum C).obj X).map f s = match s with | Sum.inl i => CategoryStruct.id (X i) | Sum.inr j => f j
                                def CategoryTheory.Pi.isoApp {I : Type w₀} {C : IType u₁} [(i : I) → Category.{v₁, u₁} (C i)] {X Y : (i : I) → C i} (f : X Y) (i : I) :
                                X i Y i

                                An isomorphism between I-indexed objects gives an isomorphism between each pair of corresponding components.

                                Equations
                                  Instances For
                                    @[simp]
                                    theorem CategoryTheory.Pi.isoApp_hom {I : Type w₀} {C : IType u₁} [(i : I) → Category.{v₁, u₁} (C i)] {X Y : (i : I) → C i} (f : X Y) (i : I) :
                                    (isoApp f i).hom = f.hom i
                                    @[simp]
                                    theorem CategoryTheory.Pi.isoApp_inv {I : Type w₀} {C : IType u₁} [(i : I) → Category.{v₁, u₁} (C i)] {X Y : (i : I) → C i} (f : X Y) (i : I) :
                                    (isoApp f i).inv = f.inv i
                                    @[simp]
                                    theorem CategoryTheory.Pi.isoApp_refl {I : Type w₀} {C : IType u₁} [(i : I) → Category.{v₁, u₁} (C i)] (X : (i : I) → C i) (i : I) :
                                    @[simp]
                                    theorem CategoryTheory.Pi.isoApp_symm {I : Type w₀} {C : IType u₁} [(i : I) → Category.{v₁, u₁} (C i)] {X Y : (i : I) → C i} (f : X Y) (i : I) :
                                    isoApp f.symm i = (isoApp f i).symm
                                    @[simp]
                                    theorem CategoryTheory.Pi.isoApp_trans {I : Type w₀} {C : IType u₁} [(i : I) → Category.{v₁, u₁} (C i)] {X Y Z : (i : I) → C i} (f : X Y) (g : Y Z) (i : I) :
                                    isoApp (f ≪≫ g) i = isoApp f i ≪≫ isoApp g i
                                    def CategoryTheory.Functor.pi {I : Type w₀} {C : IType u₁} [(i : I) → Category.{v₁, u₁} (C i)] {D : IType u₂} [(i : I) → Category.{v₂, u₂} (D i)] (F : (i : I) → Functor (C i) (D i)) :
                                    Functor ((i : I) → C i) ((i : I) → D i)

                                    Assemble an I-indexed family of functors into a functor between the pi types.

                                    Equations
                                      Instances For
                                        @[simp]
                                        theorem CategoryTheory.Functor.pi_map {I : Type w₀} {C : IType u₁} [(i : I) → Category.{v₁, u₁} (C i)] {D : IType u₂} [(i : I) → Category.{v₂, u₂} (D i)] (F : (i : I) → Functor (C i) (D i)) {X✝ Y✝ : (i : I) → C i} (α : X✝ Y✝) (i : I) :
                                        (pi F).map α i = (F i).map (α i)
                                        @[simp]
                                        theorem CategoryTheory.Functor.pi_obj {I : Type w₀} {C : IType u₁} [(i : I) → Category.{v₁, u₁} (C i)] {D : IType u₂} [(i : I) → Category.{v₂, u₂} (D i)] (F : (i : I) → Functor (C i) (D i)) (f : (i : I) → C i) (i : I) :
                                        (pi F).obj f i = (F i).obj (f i)
                                        def CategoryTheory.Functor.pi' {I : Type w₀} {C : IType u₁} [(i : I) → Category.{v₁, u₁} (C i)] {A : Type u₃} [Category.{v₃, u₃} A] (f : (i : I) → Functor A (C i)) :
                                        Functor A ((i : I) → C i)

                                        Similar to pi, but all functors come from the same category A

                                        Equations
                                          Instances For
                                            @[simp]
                                            theorem CategoryTheory.Functor.pi'_obj {I : Type w₀} {C : IType u₁} [(i : I) → Category.{v₁, u₁} (C i)] {A : Type u₃} [Category.{v₃, u₃} A] (f : (i : I) → Functor A (C i)) (a : A) (i : I) :
                                            (pi' f).obj a i = (f i).obj a
                                            @[simp]
                                            theorem CategoryTheory.Functor.pi'_map {I : Type w₀} {C : IType u₁} [(i : I) → Category.{v₁, u₁} (C i)] {A : Type u₃} [Category.{v₃, u₃} A] (f : (i : I) → Functor A (C i)) {X✝ Y✝ : A} (h : X✝ Y✝) (i : I) :
                                            (pi' f).map h i = (f i).map h
                                            def CategoryTheory.Functor.pi'CompEval {I : Type w₀} {C : IType u₁} [(i : I) → Category.{v₁, u₁} (C i)] {A : Type u_1} [Category.{u_2, u_1} A] (F : (i : I) → Functor A (C i)) (i : I) :
                                            (pi' F).comp (Pi.eval C i) F i

                                            The projections of Functor.pi' F are isomorphic to the functors of the family F

                                            Equations
                                              Instances For
                                                @[simp]
                                                theorem CategoryTheory.Functor.pi'CompEval_hom_app {I : Type w₀} {C : IType u₁} [(i : I) → Category.{v₁, u₁} (C i)] {A : Type u_1} [Category.{u_2, u_1} A] (F : (i : I) → Functor A (C i)) (i : I) (X : A) :
                                                @[simp]
                                                theorem CategoryTheory.Functor.pi'CompEval_inv_app {I : Type w₀} {C : IType u₁} [(i : I) → Category.{v₁, u₁} (C i)] {A : Type u_1} [Category.{u_2, u_1} A] (F : (i : I) → Functor A (C i)) (i : I) (X : A) :
                                                @[simp]
                                                theorem CategoryTheory.Functor.eqToHom_proj {I : Type w₀} {C : IType u₁} [(i : I) → Category.{v₁, u₁} (C i)] {x x' : (i : I) → C i} (h : x = x') (i : I) :
                                                eqToHom h i = eqToHom
                                                @[simp]
                                                theorem CategoryTheory.Functor.pi'_eval {I : Type w₀} {C : IType u₁} [(i : I) → Category.{v₁, u₁} (C i)] {A : Type u₃} [Category.{v₃, u₃} A] (f : (i : I) → Functor A (C i)) (i : I) :
                                                (pi' f).comp (Pi.eval C i) = f i
                                                theorem CategoryTheory.Functor.pi_ext {I : Type w₀} {C : IType u₁} [(i : I) → Category.{v₁, u₁} (C i)] {A : Type u₃} [Category.{v₃, u₃} A] (f f' : Functor A ((i : I) → C i)) (h : ∀ (i : I), f.comp (Pi.eval C i) = f'.comp (Pi.eval C i)) :
                                                f = f'

                                                Two functors to a product category are equal iff they agree on every coordinate.

                                                def CategoryTheory.NatTrans.pi {I : Type w₀} {C : IType u₁} [(i : I) → Category.{v₁, u₁} (C i)] {D : IType u₂} [(i : I) → Category.{v₂, u₂} (D i)] {F G : (i : I) → Functor (C i) (D i)} (α : (i : I) → F i G i) :

                                                Assemble an I-indexed family of natural transformations into a single natural transformation.

                                                Equations
                                                  Instances For
                                                    @[simp]
                                                    theorem CategoryTheory.NatTrans.pi_app {I : Type w₀} {C : IType u₁} [(i : I) → Category.{v₁, u₁} (C i)] {D : IType u₂} [(i : I) → Category.{v₂, u₂} (D i)] {F G : (i : I) → Functor (C i) (D i)} (α : (i : I) → F i G i) (f : (i : I) → C i) (i : I) :
                                                    (pi α).app f i = (α i).app (f i)
                                                    def CategoryTheory.NatTrans.pi' {I : Type w₀} {C : IType u₁} [(i : I) → Category.{v₁, u₁} (C i)] {E : Type u_1} [Category.{u_2, u_1} E] {F G : Functor E ((i : I) → C i)} (τ : (i : I) → F.comp (Pi.eval C i) G.comp (Pi.eval C i)) :
                                                    F G

                                                    Assemble an I-indexed family of natural transformations into a single natural transformation.

                                                    Equations
                                                      Instances For
                                                        @[simp]
                                                        theorem CategoryTheory.NatTrans.pi'_app {I : Type w₀} {C : IType u₁} [(i : I) → Category.{v₁, u₁} (C i)] {E : Type u_1} [Category.{u_2, u_1} E] {F G : Functor E ((i : I) → C i)} (τ : (i : I) → F.comp (Pi.eval C i) G.comp (Pi.eval C i)) (X : E) (i : I) :
                                                        (pi' τ).app X i = (τ i).app X
                                                        def CategoryTheory.NatIso.pi {I : Type w₀} {C : IType u₁} [(i : I) → Category.{v₁, u₁} (C i)] {D : IType u₂} [(i : I) → Category.{v₂, u₂} (D i)] {F G : (i : I) → Functor (C i) (D i)} (e : (i : I) → F i G i) :

                                                        Assemble an I-indexed family of natural isomorphisms into a single natural isomorphism.

                                                        Equations
                                                          Instances For
                                                            @[simp]
                                                            theorem CategoryTheory.NatIso.pi_inv {I : Type w₀} {C : IType u₁} [(i : I) → Category.{v₁, u₁} (C i)] {D : IType u₂} [(i : I) → Category.{v₂, u₂} (D i)] {F G : (i : I) → Functor (C i) (D i)} (e : (i : I) → F i G i) :
                                                            (pi e).inv = NatTrans.pi fun (i : I) => (e i).inv
                                                            @[simp]
                                                            theorem CategoryTheory.NatIso.pi_hom {I : Type w₀} {C : IType u₁} [(i : I) → Category.{v₁, u₁} (C i)] {D : IType u₂} [(i : I) → Category.{v₂, u₂} (D i)] {F G : (i : I) → Functor (C i) (D i)} (e : (i : I) → F i G i) :
                                                            (pi e).hom = NatTrans.pi fun (i : I) => (e i).hom
                                                            def CategoryTheory.NatIso.pi' {I : Type w₀} {C : IType u₁} [(i : I) → Category.{v₁, u₁} (C i)] {E : Type u_1} [Category.{u_2, u_1} E] {F G : Functor E ((i : I) → C i)} (e : (i : I) → F.comp (Pi.eval C i) G.comp (Pi.eval C i)) :
                                                            F G

                                                            Assemble an I-indexed family of natural isomorphisms into a single natural isomorphism.

                                                            Equations
                                                              Instances For
                                                                @[simp]
                                                                theorem CategoryTheory.NatIso.pi'_hom {I : Type w₀} {C : IType u₁} [(i : I) → Category.{v₁, u₁} (C i)] {E : Type u_1} [Category.{u_2, u_1} E] {F G : Functor E ((i : I) → C i)} (e : (i : I) → F.comp (Pi.eval C i) G.comp (Pi.eval C i)) :
                                                                (pi' e).hom = NatTrans.pi' fun (i : I) => (e i).hom
                                                                @[simp]
                                                                theorem CategoryTheory.NatIso.pi'_inv {I : Type w₀} {C : IType u₁} [(i : I) → Category.{v₁, u₁} (C i)] {E : Type u_1} [Category.{u_2, u_1} E] {F G : Functor E ((i : I) → C i)} (e : (i : I) → F.comp (Pi.eval C i) G.comp (Pi.eval C i)) :
                                                                (pi' e).inv = NatTrans.pi' fun (i : I) => (e i).inv
                                                                theorem CategoryTheory.isIso_pi_iff {I : Type w₀} {C : IType u₁} [(i : I) → Category.{v₁, u₁} (C i)] {X Y : (i : I) → C i} (f : X Y) :
                                                                IsIso f ∀ (i : I), IsIso (f i)
                                                                def CategoryTheory.Pi.eqToEquivalence {I : Type w₀} (C : IType u₁) [(i : I) → Category.{v₁, u₁} (C i)] {i j : I} (h : i = j) :
                                                                C i C j

                                                                For a family of categories C i indexed by I, an equality i = j in I induces an equivalence C i ≌ C j.

                                                                Equations
                                                                  Instances For
                                                                    def CategoryTheory.Pi.evalCompEqToEquivalenceFunctor {I : Type w₀} (C : IType u₁) [(i : I) → Category.{v₁, u₁} (C i)] {i j : I} (h : i = j) :

                                                                    When i = j, projections Pi.eval C i and Pi.eval C j are related by the equivalence Pi.eqToEquivalence C h : C i ≌ C j.

                                                                    Equations
                                                                      Instances For
                                                                        @[simp]
                                                                        theorem CategoryTheory.Pi.evalCompEqToEquivalenceFunctor_hom {I : Type w₀} (C : IType u₁) [(i : I) → Category.{v₁, u₁} (C i)] {i j : I} (h : i = j) :
                                                                        @[simp]
                                                                        theorem CategoryTheory.Pi.evalCompEqToEquivalenceFunctor_inv {I : Type w₀} (C : IType u₁) [(i : I) → Category.{v₁, u₁} (C i)] {i j : I} (h : i = j) :
                                                                        def CategoryTheory.Pi.eqToEquivalenceFunctorIso {I : Type w₀} {J : Type w₁} (C : IType u₁) [(i : I) → Category.{v₁, u₁} (C i)] (f : JI) {i' j' : J} (h : i' = j') :
                                                                        (eqToEquivalence C ).functor (eqToEquivalence (fun (i' : J) => C (f i')) h).functor

                                                                        The equivalences given by Pi.eqToEquivalence are compatible with reindexing.

                                                                        Equations
                                                                          Instances For
                                                                            @[simp]
                                                                            theorem CategoryTheory.Pi.eqToEquivalenceFunctorIso_inv {I : Type w₀} {J : Type w₁} (C : IType u₁) [(i : I) → Category.{v₁, u₁} (C i)] (f : JI) {i' j' : J} (h : i' = j') :
                                                                            @[simp]
                                                                            theorem CategoryTheory.Pi.eqToEquivalenceFunctorIso_hom {I : Type w₀} {J : Type w₁} (C : IType u₁) [(i : I) → Category.{v₁, u₁} (C i)] (f : JI) {i' j' : J} (h : i' = j') :
                                                                            noncomputable def CategoryTheory.Pi.equivalenceOfEquiv {I : Type w₀} {J : Type w₁} (C : IType u₁) [(i : I) → Category.{v₁, u₁} (C i)] (e : J I) :
                                                                            ((j : J) → C (e j)) (i : I) → C i

                                                                            Reindexing a family of categories gives equivalent Pi categories.

                                                                            Equations
                                                                              Instances For
                                                                                @[simp]
                                                                                theorem CategoryTheory.Pi.equivalenceOfEquiv_counitIso {I : Type w₀} {J : Type w₁} (C : IType u₁) [(i : I) → Category.{v₁, u₁} (C i)] (e : J I) :
                                                                                (equivalenceOfEquiv C e).counitIso = NatIso.pi' fun (i : I) => ((Functor.pi' fun (i' : J) => eval C (e i')).associator (eval (fun (j : J) => C (e j)) (e.symm i)) (eqToEquivalence C ).functor).symm ≪≫ Functor.isoWhiskerRight (Functor.pi'CompEval (fun (i' : J) => eval C (e i')) (e.symm i)) (eqToEquivalence C ).functor ≪≫ evalCompEqToEquivalenceFunctor C ≪≫ (eval C i).leftUnitor.symm
                                                                                @[simp]
                                                                                theorem CategoryTheory.Pi.equivalenceOfEquiv_inverse {I : Type w₀} {J : Type w₁} (C : IType u₁) [(i : I) → Category.{v₁, u₁} (C i)] (e : J I) :
                                                                                (equivalenceOfEquiv C e).inverse = Functor.pi' fun (i' : J) => eval C (e i')
                                                                                @[simp]
                                                                                theorem CategoryTheory.Pi.equivalenceOfEquiv_unitIso {I : Type w₀} {J : Type w₁} (C : IType u₁) [(i : I) → Category.{v₁, u₁} (C i)] (e : J I) :
                                                                                (equivalenceOfEquiv C e).unitIso = NatIso.pi' fun (i' : J) => (eval (fun (i : J) => C (e i)) i').leftUnitor ≪≫ (evalCompEqToEquivalenceFunctor (fun (j : J) => C (e j)) ).symm ≪≫ (eval (fun (j : J) => C (e j)) (e.symm (e i'))).isoWhiskerLeft (eqToEquivalenceFunctorIso C e ).symm ≪≫ (Functor.pi'CompEval (eval (fun (j : J) => C (e j)) (e.symm (e i'))).comp (eqToEquivalence C ).functor).symm ≪≫ (Functor.pi' (eval (fun (j : J) => C (e j)) (e.symm (e i'))).comp).isoWhiskerLeft (Functor.pi'CompEval (eval fun (i : Functor (C (e (e.symm (e i')))) (C (e i'))) => C (e i')) (eqToEquivalence C ).functor).symm ≪≫ ((Functor.pi' (eval (fun (j : J) => C (e j)) (e.symm (e i'))).comp).associator (Functor.pi' (eval fun (i : Functor (C (e (e.symm (e i')))) (C (e i'))) => C (e i'))) (eval (fun (i : Functor (C (e (e.symm (e i')))) (C (e i'))) => C (e i')) (eqToEquivalence C ).functor)).symm
                                                                                @[simp]
                                                                                theorem CategoryTheory.Pi.equivalenceOfEquiv_functor {I : Type w₀} {J : Type w₁} (C : IType u₁) [(i : I) → Category.{v₁, u₁} (C i)] (e : J I) :
                                                                                (equivalenceOfEquiv C e).functor = Functor.pi' fun (i : I) => (eval (fun (j : J) => C (e j)) (e.symm i)).comp (eqToEquivalence C ).functor
                                                                                def CategoryTheory.Pi.optionEquivalence {J : Type w₁} (C' : Option JType u₁) [(i : Option J) → Category.{v₁, u₁} (C' i)] :
                                                                                ((i : Option J) → C' i) C' none × ((j : J) → C' (some j))

                                                                                A product of categories indexed by Option J identifies to a binary product.

                                                                                Equations
                                                                                  Instances For
                                                                                    @[simp]
                                                                                    theorem CategoryTheory.Pi.optionEquivalence_functor {J : Type w₁} (C' : Option JType u₁) [(i : Option J) → Category.{v₁, u₁} (C' i)] :
                                                                                    (optionEquivalence C').functor = (eval C' none).prod' (Functor.pi' fun (i : J) => eval C' (some i))
                                                                                    @[simp]
                                                                                    theorem CategoryTheory.Pi.optionEquivalence_inverse {J : Type w₁} (C' : Option JType u₁) [(i : Option J) → Category.{v₁, u₁} (C' i)] :
                                                                                    (optionEquivalence C').inverse = Functor.pi' fun (i : Option J) => match i with | none => Prod.fst (C' none) ((j : J) → C' (some j)) | some i => (Prod.snd (C' none) ((j : J) → C' (some j))).comp (eval (fun (j : J) => C' (some j)) i)
                                                                                    @[simp]
                                                                                    theorem CategoryTheory.Pi.optionEquivalence_unitIso {J : Type w₁} (C' : Option JType u₁) [(i : Option J) → Category.{v₁, u₁} (C' i)] :
                                                                                    (optionEquivalence C').unitIso = NatIso.pi' fun (i : Option J) => match i with | none => Iso.refl ((Functor.id ((i : Option J) → C' i)).comp (eval C' none)) | some val => Iso.refl ((Functor.id ((i : Option J) → C' i)).comp (eval C' (some val)))
                                                                                    @[simp]
                                                                                    theorem CategoryTheory.Pi.optionEquivalence_counitIso {J : Type w₁} (C' : Option JType u₁) [(i : Option J) → Category.{v₁, u₁} (C' i)] :
                                                                                    (optionEquivalence C').counitIso = Iso.refl ((Functor.pi' fun (i : Option J) => match i with | none => Prod.fst (C' none) ((j : J) → C' (some j)) | some i => (Prod.snd (C' none) ((j : J) → C' (some j))).comp (eval (fun (j : J) => C' (some j)) i)).comp ((eval C' none).prod' (Functor.pi' fun (i : J) => eval C' (some i))))
                                                                                    def CategoryTheory.Equivalence.pi {I : Type w₀} {C : IType u₁} [(i : I) → Category.{v₁, u₁} (C i)] {D : IType u₂} [(i : I) → Category.{v₂, u₂} (D i)] (E : (i : I) → C i D i) :
                                                                                    ((i : I) → C i) (i : I) → D i

                                                                                    Assemble an I-indexed family of equivalences of categories into a single equivalence.

                                                                                    Equations
                                                                                      Instances For
                                                                                        @[simp]
                                                                                        theorem CategoryTheory.Equivalence.pi_inverse {I : Type w₀} {C : IType u₁} [(i : I) → Category.{v₁, u₁} (C i)] {D : IType u₂} [(i : I) → Category.{v₂, u₂} (D i)] (E : (i : I) → C i D i) :
                                                                                        (pi E).inverse = Functor.pi fun (i : I) => (E i).inverse
                                                                                        @[simp]
                                                                                        theorem CategoryTheory.Equivalence.pi_functor {I : Type w₀} {C : IType u₁} [(i : I) → Category.{v₁, u₁} (C i)] {D : IType u₂} [(i : I) → Category.{v₂, u₂} (D i)] (E : (i : I) → C i D i) :
                                                                                        (pi E).functor = Functor.pi fun (i : I) => (E i).functor
                                                                                        @[simp]
                                                                                        theorem CategoryTheory.Equivalence.pi_counitIso {I : Type w₀} {C : IType u₁} [(i : I) → Category.{v₁, u₁} (C i)] {D : IType u₂} [(i : I) → Category.{v₂, u₂} (D i)] (E : (i : I) → C i D i) :
                                                                                        (pi E).counitIso = NatIso.pi fun (i : I) => (E i).counitIso
                                                                                        @[simp]
                                                                                        theorem CategoryTheory.Equivalence.pi_unitIso {I : Type w₀} {C : IType u₁} [(i : I) → Category.{v₁, u₁} (C i)] {D : IType u₂} [(i : I) → Category.{v₂, u₂} (D i)] (E : (i : I) → C i D i) :
                                                                                        (pi E).unitIso = NatIso.pi fun (i : I) => (E i).unitIso
                                                                                        instance CategoryTheory.Equivalence.instIsEquivalenceForallPi {I : Type w₀} {C : IType u₁} [(i : I) → Category.{v₁, u₁} (C i)] {D : IType u₂} [(i : I) → Category.{v₂, u₂} (D i)] (F : (i : I) → Functor (C i) (D i)) [∀ (i : I), (F i).IsEquivalence] :