Documentation

Mathlib.CategoryTheory.Preadditive.FunctorCategory

Preadditive structure on functor categories #

If C and D are categories and D is preadditive, then C ⥤ D is also preadditive.

Equations
    instance CategoryTheory.instAddHomFunctor {C : Type u_1} {D : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} D] [Preadditive D] {F G : Functor C D} :
    Add (F G)
    Equations
      instance CategoryTheory.instNegHomFunctor {C : Type u_1} {D : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} D] [Preadditive D] {F G : Functor C D} :
      Neg (F G)
      Equations
        def CategoryTheory.NatTrans.appHom {C : Type u_1} {D : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} D] [Preadditive D] {F G : Functor C D} (X : C) :
        (F G) →+ (F.obj X G.obj X)

        Application of a natural transformation at a fixed object, as group homomorphism

        Equations
          Instances For
            @[simp]
            theorem CategoryTheory.NatTrans.appHom_apply {C : Type u_1} {D : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} D] [Preadditive D] {F G : Functor C D} (X : C) (α : F G) :
            (appHom X) α = α.app X
            @[simp]
            theorem CategoryTheory.NatTrans.app_zero {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_3, u_2} D] [Preadditive D] {F G : Functor C D} (X : C) :
            app 0 X = 0
            @[simp]
            theorem CategoryTheory.NatTrans.app_add {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_3, u_2} D] [Preadditive D] {F G : Functor C D} (X : C) (α β : F G) :
            (α + β).app X = α.app X + β.app X
            @[simp]
            theorem CategoryTheory.NatTrans.app_sub {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_3, u_2} D] [Preadditive D] {F G : Functor C D} (X : C) (α β : F G) :
            (α - β).app X = α.app X - β.app X
            @[simp]
            theorem CategoryTheory.NatTrans.app_neg {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_3, u_2} D] [Preadditive D] {F G : Functor C D} (X : C) (α : F G) :
            (-α).app X = -α.app X
            @[simp]
            theorem CategoryTheory.NatTrans.app_nsmul {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_3, u_2} D] [Preadditive D] {F G : Functor C D} (X : C) (α : F G) (n : ) :
            (n α).app X = n α.app X
            @[simp]
            theorem CategoryTheory.NatTrans.app_zsmul {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_3, u_2} D] [Preadditive D] {F G : Functor C D} (X : C) (α : F G) (n : ) :
            (n α).app X = n α.app X
            @[simp]
            theorem CategoryTheory.NatTrans.app_units_zsmul {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_3, u_2} D] [Preadditive D] {F G : Functor C D} (X : C) (α : F G) (n : ˣ) :
            (n α).app X = n α.app X
            @[simp]
            theorem CategoryTheory.NatTrans.app_sum {C : Type u_1} {D : Type u_2} [Category.{u_5, u_1} C] [Category.{u_4, u_2} D] [Preadditive D] {F G : Functor C D} {ι : Type u_3} (s : Finset ι) (X : C) (α : ι → (F G)) :
            (∑ is, α i).app X = is, (α i).app X