Documentation

Mathlib.CategoryTheory.Preadditive.Opposite

If C is preadditive, Cᵒᵖ has a natural preadditive structure. #

Equations
    @[simp]
    theorem CategoryTheory.unop_add (C : Type u_1) [Category.{u_2, u_1} C] [Preadditive C] {X Y : Cᵒᵖ} (f g : X Y) :
    (f + g).unop = f.unop + g.unop
    @[simp]
    theorem CategoryTheory.unop_zsmul (C : Type u_1) [Category.{u_2, u_1} C] [Preadditive C] {X Y : Cᵒᵖ} (k : ) (f : X Y) :
    (k f).unop = k f.unop
    @[simp]
    theorem CategoryTheory.unop_neg (C : Type u_1) [Category.{u_2, u_1} C] [Preadditive C] {X Y : Cᵒᵖ} (f : X Y) :
    (-f).unop = -f.unop
    @[simp]
    theorem CategoryTheory.op_add (C : Type u_1) [Category.{u_2, u_1} C] [Preadditive C] {X Y : C} (f g : X Y) :
    (f + g).op = f.op + g.op
    @[simp]
    theorem CategoryTheory.op_zsmul (C : Type u_1) [Category.{u_2, u_1} C] [Preadditive C] {X Y : C} (k : ) (f : X Y) :
    (k f).op = k f.op
    @[simp]
    theorem CategoryTheory.op_neg (C : Type u_1) [Category.{u_2, u_1} C] [Preadditive C] {X Y : C} (f : X Y) :
    (-f).op = -f.op

    unop induces morphisms of monoids on hom groups of a preadditive category

    Equations
      Instances For
        @[simp]
        theorem CategoryTheory.unopHom_apply {C : Type u_1} [Category.{u_2, u_1} C] [Preadditive C] (X Y : Cᵒᵖ) (f : X Y) :
        (unopHom X Y) f = f.unop
        @[simp]
        theorem CategoryTheory.unop_sum {C : Type u_1} [Category.{u_3, u_1} C] [Preadditive C] (X Y : Cᵒᵖ) {ι : Type u_2} (s : Finset ι) (f : ι → (X Y)) :
        (s.sum f).unop = is, (f i).unop

        op induces morphisms of monoids on hom groups of a preadditive category

        Equations
          Instances For
            @[simp]
            theorem CategoryTheory.opHom_apply {C : Type u_1} [Category.{u_2, u_1} C] [Preadditive C] (X Y : C) (f : X Y) :
            (opHom X Y) f = f.op
            @[simp]
            theorem CategoryTheory.op_sum {C : Type u_1} [Category.{u_3, u_1} C] [Preadditive C] (X Y : C) {ι : Type u_2} (s : Finset ι) (f : ι → (X Y)) :
            (s.sum f).op = is, (f i).op

            G ⟶ G and (End G)ᵐᵒᵖ are isomorphic as (End G)ᵐᵒᵖ-modules.

            Equations
              Instances For
                @[simp]