Documentation

Mathlib.CategoryTheory.Sites.NonabelianCohomology.H1

The cohomology of a sheaf of groups in degree 1

In this file, we shall define the cohomology in degree 1 of a sheaf of groups (TODO).

Currently, given a presheaf of groups G : Cᵒᵖ ⥤ Grp and a family of objects U : I → C, we define 1-cochains/1-cocycles/H^1 with values in G over U. (This definition neither requires the assumption that G is a sheaf, nor that U covers the terminal object.) As we do not assume that G is a presheaf of abelian groups, this cohomology theory is only defined in low degrees; in the abelian case, it would be a particular case of Čech cohomology (TODO).

TODO #

References #

def CategoryTheory.PresheafOfGroups.ZeroCochain {C : Type u} [Category.{v, u} C] (G : Functor Cᵒᵖ Grp) {I : Type w'} (U : IC) :
Type (max w w')

A zero cochain consists of a family of sections.

Equations
    Instances For
      @[simp]
      theorem CategoryTheory.PresheafOfGroups.Cochain₀.one_apply {C : Type u} [Category.{v, u} C] (G : Functor Cᵒᵖ Grp) {I : Type w'} (U : IC) (i : I) :
      1 i = 1
      @[simp]
      theorem CategoryTheory.PresheafOfGroups.Cochain₀.inv_apply {C : Type u} [Category.{v, u} C] (G : Functor Cᵒᵖ Grp) {I : Type w'} (U : IC) (γ : ZeroCochain G U) (i : I) :
      γ⁻¹ i = (γ i)⁻¹
      @[simp]
      theorem CategoryTheory.PresheafOfGroups.Cochain₀.mul_apply {C : Type u} [Category.{v, u} C] (G : Functor Cᵒᵖ Grp) {I : Type w'} (U : IC) (γ₁ γ₂ : ZeroCochain G U) (i : I) :
      (γ₁ * γ₂) i = γ₁ i * γ₂ i
      structure CategoryTheory.PresheafOfGroups.OneCochain {C : Type u} [Category.{v, u} C] (G : Functor Cᵒᵖ Grp) {I : Type w'} (U : IC) :
      Type (max (max (max u v) w) w')

      A 1-cochain of a presheaf of groups G : Cᵒᵖ ⥤ Grp on a family U : I → C of objects consists of the data of an element in G.obj (Opposite.op T) whenever we have elements i and j in I and maps a : T ⟶ U i and b : T ⟶ U j, and it must satisfy a compatibility with respect to precomposition. (When the binary product of U i and U j exists, this data for all T, a and b corresponds to the data of a section of G on this product.)

      Instances For
        theorem CategoryTheory.PresheafOfGroups.OneCochain.ext_iff {C : Type u} {inst✝ : Category.{v, u} C} {G : Functor Cᵒᵖ Grp} {I : Type w'} {U : IC} {x y : OneCochain G U} :
        x = y x.ev = y.ev
        theorem CategoryTheory.PresheafOfGroups.OneCochain.ext {C : Type u} {inst✝ : Category.{v, u} C} {G : Functor Cᵒᵖ Grp} {I : Type w'} {U : IC} {x y : OneCochain G U} (ev : x.ev = y.ev) :
        x = y
        Equations
          @[simp]
          theorem CategoryTheory.PresheafOfGroups.OneCochain.one_ev {C : Type u} [Category.{v, u} C] (G : Functor Cᵒᵖ Grp) {I : Type w'} (U : IC) (i j : I) {T : C} (a : T U i) (b : T U j) :
          ev 1 i j a b = 1
          Equations
            @[simp]
            theorem CategoryTheory.PresheafOfGroups.OneCochain.mul_ev {C : Type u} [Category.{v, u} C] {G : Functor Cᵒᵖ Grp} {I : Type w'} {U : IC} (γ₁ γ₂ : OneCochain G U) (i j : I) {T : C} (a : T U i) (b : T U j) :
            (γ₁ * γ₂).ev i j a b = γ₁.ev i j a b * γ₂.ev i j a b
            Equations
              @[simp]
              theorem CategoryTheory.PresheafOfGroups.OneCochain.inv_ev {C : Type u} [Category.{v, u} C] {G : Functor Cᵒᵖ Grp} {I : Type w'} {U : IC} (γ : OneCochain G U) (i j : I) {T : C} (a : T U i) (b : T U j) :
              γ⁻¹.ev i j a b = (γ.ev i j a b)⁻¹
              Equations
                structure CategoryTheory.PresheafOfGroups.OneCocycle {C : Type u} [Category.{v, u} C] (G : Functor Cᵒᵖ Grp) {I : Type w'} (U : IC) extends CategoryTheory.PresheafOfGroups.OneCochain G U :
                Type (max (max (max u v) w) w')

                A 1-cocycle is a 1-cochain which satisfies the cocycle condition.

                Instances For
                  Equations
                    @[simp]
                    theorem CategoryTheory.PresheafOfGroups.OneCocycle.ev_refl {C : Type u} [Category.{v, u} C] (G : Functor Cᵒᵖ Grp) {I : Type w'} (U : IC) (γ : OneCocycle G U) (i : I) T : C (a : T U i) :
                    γ.ev i i a a = 1
                    theorem CategoryTheory.PresheafOfGroups.OneCocycle.ev_symm {C : Type u} [Category.{v, u} C] (G : Functor Cᵒᵖ Grp) {I : Type w'} (U : IC) (γ : OneCocycle G U) (i j : I) T : C (a : T U i) (b : T U j) :
                    γ.ev i j a b = (γ.ev j i b a)⁻¹
                    def CategoryTheory.PresheafOfGroups.OneCohomologyRelation {C : Type u} [Category.{v, u} C] {G : Functor Cᵒᵖ Grp} {I : Type w'} {U : IC} (γ₁ γ₂ : OneCochain G U) (α : ZeroCochain G U) :

                    The assertion that two cochains in OneCochain G U are cohomologous via an explicit zero-cochain.

                    Equations
                      Instances For
                        theorem CategoryTheory.PresheafOfGroups.OneCohomologyRelation.symm {C : Type u} [Category.{v, u} C] {G : Functor Cᵒᵖ Grp} {I : Type w'} {U : IC} {γ₁ γ₂ : OneCochain G U} {α : ZeroCochain G U} (h : OneCohomologyRelation γ₁ γ₂ α) :
                        theorem CategoryTheory.PresheafOfGroups.OneCohomologyRelation.trans {C : Type u} [Category.{v, u} C] {G : Functor Cᵒᵖ Grp} {I : Type w'} {U : IC} {γ₁ γ₂ γ₃ : OneCochain G U} {α β : ZeroCochain G U} (h₁₂ : OneCohomologyRelation γ₁ γ₂ α) (h₂₃ : OneCohomologyRelation γ₂ γ₃ β) :
                        OneCohomologyRelation γ₁ γ₃ (β * α)
                        def CategoryTheory.PresheafOfGroups.OneCocycle.IsCohomologous {C : Type u} [Category.{v, u} C] {G : Functor Cᵒᵖ Grp} {I : Type w'} {U : IC} (γ₁ γ₂ : OneCocycle G U) :

                        The cohomology (equivalence) relation on 1-cocycles.

                        Equations
                          Instances For
                            def CategoryTheory.PresheafOfGroups.H1 {C : Type u} [Category.{v, u} C] (G : Functor Cᵒᵖ Grp) {I : Type w'} (U : IC) :
                            Type (max (max (max u v) w) w')

                            The cohomology in degree 1 of a presheaf of groups G : Cᵒᵖ ⥤ Grp on a family of objects U : I → C.

                            Equations
                              Instances For
                                def CategoryTheory.PresheafOfGroups.OneCocycle.class {C : Type u} [Category.{v, u} C] {G : Functor Cᵒᵖ Grp} {I : Type w'} {U : IC} (γ : OneCocycle G U) :
                                H1 G U

                                The cohomology class of a 1-cocycle.

                                Equations
                                  Instances For
                                    instance CategoryTheory.PresheafOfGroups.instOneH1 {C : Type u} [Category.{v, u} C] {G : Functor Cᵒᵖ Grp} {I : Type w'} {U : IC} :
                                    One (H1 G U)
                                    Equations
                                      theorem CategoryTheory.PresheafOfGroups.OneCocycle.class_eq_iff {C : Type u} [Category.{v, u} C] {G : Functor Cᵒᵖ Grp} {I : Type w'} {U : IC} (γ₁ γ₂ : OneCocycle G U) :
                                      γ₁.class = γ₂.class γ₁.IsCohomologous γ₂
                                      theorem CategoryTheory.PresheafOfGroups.OneCocycle.IsCohomologous.class_eq {C : Type u} [Category.{v, u} C] {G : Functor Cᵒᵖ Grp} {I : Type w'} {U : IC} {γ₁ γ₂ : OneCocycle G U} (h : γ₁.IsCohomologous γ₂) :
                                      γ₁.class = γ₂.class