Documentation

Mathlib.CategoryTheory.Sums.Associator

Associator for binary disjoint union of categories. #

The associator functor ((C ⊕ D) ⊕ E) ⥤ (C ⊕ (D ⊕ E)) and its inverse form an equivalence.

The associator functor (C ⊕ D) ⊕ E ⥤ C ⊕ (D ⊕ E) for sums of categories.

Equations
    Instances For
      @[simp]
      theorem CategoryTheory.sum.associator_map_inl_inl (C : Type u₁) [Category.{v₁, u₁} C] (D : Type u₂) [Category.{v₂, u₂} D] (E : Type u₃) [Category.{v₃, u₃} E] {X Y : C} (f : X Y) :
      (associator C D E).map ((Sum.inl_ (C D) E).map ((Sum.inl_ C D).map f)) = (Sum.inl_ C (D E)).map f
      @[simp]
      theorem CategoryTheory.sum.associator_map_inl_inr (C : Type u₁) [Category.{v₁, u₁} C] (D : Type u₂) [Category.{v₂, u₂} D] (E : Type u₃) [Category.{v₃, u₃} E] {X Y : D} (f : X Y) :
      (associator C D E).map ((Sum.inl_ (C D) E).map ((Sum.inr_ C D).map f)) = (Sum.inr_ C (D E)).map ((Sum.inl_ D E).map f)
      @[simp]
      theorem CategoryTheory.sum.associator_map_inr (C : Type u₁) [Category.{v₁, u₁} C] (D : Type u₂) [Category.{v₂, u₂} D] (E : Type u₃) [Category.{v₃, u₃} E] {X Y : E} (f : X Y) :
      (associator C D E).map ((Sum.inr_ (C D) E).map f) = (Sum.inr_ C (D E)).map ((Sum.inr_ D E).map f)

      Characterizing the composition of the associator and the left inclusion.

      Equations
        Instances For

          Characterizing the composition of the associator and the right inclusion.

          Equations
            Instances For

              Further characterizing the composition of the associator and the left inclusion.

              Equations
                Instances For

                  Further characterizing the composition of the associator and the left inclusion.

                  Equations
                    Instances For

                      The inverse associator functor C ⊕ (D ⊕ E) ⥤ (C ⊕ D) ⊕ E for sums of categories.

                      Equations
                        Instances For
                          @[simp]
                          theorem CategoryTheory.sum.inverseAssociator_map_inl (C : Type u₁) [Category.{v₁, u₁} C] (D : Type u₂) [Category.{v₂, u₂} D] (E : Type u₃) [Category.{v₃, u₃} E] {X Y : C} (f : X Y) :
                          (inverseAssociator C D E).map ((Sum.inl_ C (D E)).map f) = (Sum.inl_ (C D) E).map ((Sum.inl_ C D).map f)
                          @[simp]
                          theorem CategoryTheory.sum.inverseAssociator_map_inr_inl (C : Type u₁) [Category.{v₁, u₁} C] (D : Type u₂) [Category.{v₂, u₂} D] (E : Type u₃) [Category.{v₃, u₃} E] {X Y : D} (f : X Y) :
                          (inverseAssociator C D E).map ((Sum.inr_ C (D E)).map ((Sum.inl_ D E).map f)) = (Sum.inl_ (C D) E).map ((Sum.inr_ C D).map f)
                          @[simp]
                          theorem CategoryTheory.sum.inverseAssociator_map_inr_inr (C : Type u₁) [Category.{v₁, u₁} C] (D : Type u₂) [Category.{v₂, u₂} D] (E : Type u₃) [Category.{v₃, u₃} E] {X Y : E} (f : X Y) :
                          (inverseAssociator C D E).map ((Sum.inr_ C (D E)).map ((Sum.inr_ D E).map f)) = (Sum.inr_ (C D) E).map f

                          Characterizing the composition of the inverse of the associator and the left inclusion.

                          Equations
                            Instances For

                              Characterizing the composition of the inverse of the associator and the right inclusion.

                              Equations
                                Instances For

                                  Further characterizing the composition of the inverse of the associator and the right inclusion.

                                  Equations
                                    Instances For

                                      Further characterizing the composition of the inverse of the associator and the right inclusion.

                                      Equations
                                        Instances For

                                          The equivalence of categories expressing associativity of sums of categories.

                                          Equations
                                            Instances For