Documentation

Mathlib.Combinatorics.Quiver.SingleObj

Single-object quiver #

Single object quiver with a given arrows type.

Main definitions #

Given a type α, SingleObj α is the Unit type, whose single object is called star α, with Quiver structure such that star α ⟶ star α is the type α. An element x : α can be reinterpreted as an element of star α ⟶ star α using toHom. More generally, a list of elements of a can be reinterpreted as a path from star α to itself using pathEquivList.

Type tag on Unit used to define single-object quivers.

Equations
    Instances For
      Equations
        instance Quiver.SingleObj.inst (α : Type u_1) :
        Equations

          The single object in SingleObj α.

          Equations
            Instances For
              theorem Quiver.SingleObj.ext {α : Type u_1} {x y : SingleObj α} :
              x = y
              @[reducible, inline]
              abbrev Quiver.SingleObj.hasReverse {α : Type u_1} (rev : αα) :

              Equip SingleObj α with a reverse operation.

              Equations
                Instances For
                  @[reducible, inline]

                  Equip SingleObj α with an involutive reverse operation.

                  Equations
                    Instances For
                      def Quiver.SingleObj.toHom {α : Type u_1} :
                      α (star α star α)

                      The type of arrows from star α to itself is equivalent to the original type α.

                      Equations
                        Instances For
                          @[simp]
                          theorem Quiver.SingleObj.toHom_apply {α : Type u_1} (a : α) :
                          toHom a = a
                          @[simp]
                          theorem Quiver.SingleObj.toHom_symm_apply {α : Type u_1} (a : α) :
                          def Quiver.SingleObj.toPrefunctor {α : Type u_1} {β : Type u_2} :
                          (αβ) SingleObj α ⥤q SingleObj β

                          Prefunctors between two SingleObj quivers correspond to functions between the corresponding arrows types.

                          Equations
                            Instances For
                              @[simp]
                              theorem Quiver.SingleObj.toPrefunctor_symm_apply {α : Type u_1} {β : Type u_2} (f : SingleObj α ⥤q SingleObj β) (a : α) :
                              @[simp]
                              theorem Quiver.SingleObj.toPrefunctor_apply_obj {α : Type u_1} {β : Type u_2} (f : αβ) (a : SingleObj α) :
                              @[simp]
                              theorem Quiver.SingleObj.toPrefunctor_apply_map {α : Type u_1} {β : Type u_2} (f : αβ) {X✝ Y✝ : SingleObj α} (a✝ : α) :
                              (toPrefunctor f).map a✝ = f a✝
                              theorem Quiver.SingleObj.toPrefunctor_comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} (f : αβ) (g : βγ) :
                              def Quiver.SingleObj.pathToList {α : Type u_1} {x : SingleObj α} :
                              Path (star α) xList α

                              Auxiliary definition for quiver.SingleObj.pathEquivList. Converts a path in the quiver single_obj α into a list of elements of type a.

                              Equations
                                Instances For
                                  def Quiver.SingleObj.listToPath {α : Type u_1} :
                                  List αPath (star α) (star α)

                                  Auxiliary definition for quiver.SingleObj.pathEquivList. Converts a list of elements of type α into a path in the quiver SingleObj α.

                                  Equations
                                    Instances For
                                      theorem Quiver.SingleObj.listToPath_pathToList {α : Type u_1} {x : SingleObj α} (p : Path (star α) x) :

                                      Paths in SingleObj α quiver correspond to lists of elements of type α.

                                      Equations
                                        Instances For
                                          @[simp]
                                          theorem Quiver.SingleObj.pathEquivList_cons {α : Type u_1} (p : Path (star α) (star α)) (a : star α star α) :
                                          @[simp]