Documentation

Mathlib.Computability.Language

Languages #

This file contains the definition and operations on formal languages over an alphabet. Note that "strings" are implemented as lists over the alphabet.

Union and concatenation define a Kleene algebra over the languages.

In addition to that, we define a reversal of a language and prove that it behaves well with respect to other language operations.

Notation #

Main definitions #

Main theorems #

def Language (α : Type u_4) :
Type u_4

A language is a set of strings over an alphabet.

Equations
    Instances For
      Equations
        instance Language.instSingletonList {α : Type u_1} :
        Equations
          instance Language.instInsertList {α : Type u_1} :
          Insert (List α) (Language α)
          Equations
            instance Language.instZero {α : Type u_1} :

            Zero language has no elements.

            Equations
              instance Language.instOne {α : Type u_1} :

              1 : Language α contains only one element [].

              Equations
                instance Language.instInhabited {α : Type u_1} :
                Equations
                  instance Language.instAdd {α : Type u_1} :

                  The sum of two languages is their union.

                  Equations
                    instance Language.instMul {α : Type u_1} :

                    The product of two languages l and m is the language made of the strings x ++ y where x ∈ l and y ∈ m.

                    Equations
                      theorem Language.zero_def {α : Type u_1} :
                      0 =
                      theorem Language.one_def {α : Type u_1} :
                      theorem Language.add_def {α : Type u_1} (l m : Language α) :
                      l + m = l m
                      theorem Language.mul_def {α : Type u_1} (l m : Language α) :
                      l * m = Set.image2 (fun (x1 x2 : List α) => x1 ++ x2) l m
                      instance Language.instKStar {α : Type u_1} :

                      The Kleene star of a language L is the set of all strings which can be written by concatenating strings from L.

                      Equations
                        theorem Language.kstar_def {α : Type u_1} (l : Language α) :
                        KStar.kstar l = {x : List α | ∃ (L : List (List α)), x = L.flatten yL, y l}
                        theorem Language.ext {α : Type u_1} {l m : Language α} (h : ∀ (x : List α), x l x m) :
                        l = m
                        theorem Language.ext_iff {α : Type u_1} {l m : Language α} :
                        l = m ∀ (x : List α), x l x m
                        @[simp]
                        theorem Language.notMem_zero {α : Type u_1} (x : List α) :
                        x0
                        @[deprecated Language.notMem_zero (since := "2025-05-23")]
                        theorem Language.not_mem_zero {α : Type u_1} (x : List α) :
                        x0

                        Alias of Language.notMem_zero.

                        @[simp]
                        theorem Language.mem_one {α : Type u_1} (x : List α) :
                        x 1 x = []
                        theorem Language.nil_mem_one {α : Type u_1} :
                        theorem Language.mem_add {α : Type u_1} (l m : Language α) (x : List α) :
                        x l + m x l x m
                        theorem Language.mem_mul {α : Type u_1} {l m : Language α} {x : List α} :
                        x l * m al, bm, a ++ b = x
                        theorem Language.append_mem_mul {α : Type u_1} {l m : Language α} {a b : List α} :
                        a lb ma ++ b l * m
                        theorem Language.mem_kstar {α : Type u_1} {l : Language α} {x : List α} :
                        x KStar.kstar l ∃ (L : List (List α)), x = L.flatten yL, y l
                        theorem Language.join_mem_kstar {α : Type u_1} {l : Language α} {L : List (List α)} (h : yL, y l) :
                        instance Language.instSemiring {α : Type u_1} :
                        Equations
                          @[simp]
                          theorem Language.add_self {α : Type u_1} (l : Language α) :
                          l + l = l
                          def Language.map {α : Type u_1} {β : Type u_2} (f : αβ) :

                          Maps the alphabet of a language.

                          Equations
                            Instances For
                              @[simp]
                              theorem Language.map_id {α : Type u_1} (l : Language α) :
                              (map id) l = l
                              @[simp]
                              theorem Language.map_map {α : Type u_1} {β : Type u_2} {γ : Type u_3} (g : βγ) (f : αβ) (l : Language α) :
                              (map g) ((map f) l) = (map (g f)) l
                              theorem Language.mem_kstar_iff_exists_nonempty {α : Type u_1} {l : Language α} {x : List α} :
                              x KStar.kstar l ∃ (S : List (List α)), x = S.flatten yS, y l y []
                              theorem Language.kstar_def_nonempty {α : Type u_1} (l : Language α) :
                              KStar.kstar l = {x : List α | ∃ (S : List (List α)), x = S.flatten yS, y l y []}
                              theorem Language.le_iff {α : Type u_1} (l m : Language α) :
                              l m l + m = m
                              theorem Language.le_mul_congr {α : Type u_1} {l₁ l₂ m₁ m₂ : Language α} :
                              l₁ m₁l₂ m₂l₁ * l₂ m₁ * m₂
                              theorem Language.le_add_congr {α : Type u_1} {l₁ l₂ m₁ m₂ : Language α} :
                              l₁ m₁l₂ m₂l₁ + l₂ m₁ + m₂
                              theorem Language.mem_iSup {α : Type u_1} {ι : Sort v} {l : ιLanguage α} {x : List α} :
                              x ⨆ (i : ι), l i ∃ (i : ι), x l i
                              theorem Language.iSup_mul {α : Type u_1} {ι : Sort v} (l : ιLanguage α) (m : Language α) :
                              (⨆ (i : ι), l i) * m = ⨆ (i : ι), l i * m
                              theorem Language.mul_iSup {α : Type u_1} {ι : Sort v} (l : ιLanguage α) (m : Language α) :
                              m * ⨆ (i : ι), l i = ⨆ (i : ι), m * l i
                              theorem Language.iSup_add {α : Type u_1} {ι : Sort v} [Nonempty ι] (l : ιLanguage α) (m : Language α) :
                              (⨆ (i : ι), l i) + m = ⨆ (i : ι), l i + m
                              theorem Language.add_iSup {α : Type u_1} {ι : Sort v} [Nonempty ι] (l : ιLanguage α) (m : Language α) :
                              m + ⨆ (i : ι), l i = ⨆ (i : ι), m + l i
                              theorem Language.mem_pow {α : Type u_1} {l : Language α} {x : List α} {n : } :
                              x l ^ n ∃ (S : List (List α)), x = S.flatten S.length = n yS, y l
                              theorem Language.kstar_eq_iSup_pow {α : Type u_1} (l : Language α) :
                              KStar.kstar l = ⨆ (i : ), l ^ i
                              @[simp]
                              theorem Language.map_kstar {α : Type u_1} {β : Type u_2} (f : αβ) (l : Language α) :
                              (map f) (KStar.kstar l) = KStar.kstar ((map f) l)
                              Equations
                                theorem Language.self_eq_mul_add_iff {α : Type u_1} {l m n : Language α} (hm : []m) :
                                l = m * l + n l = KStar.kstar m * n

                                Arden's lemma

                                def Language.reverse {α : Type u_1} (l : Language α) :

                                Language l.reverse is defined as the set of words from l backwards.

                                Equations
                                  Instances For
                                    @[simp]
                                    theorem Language.mem_reverse {α : Type u_1} {l : Language α} {a : List α} :
                                    theorem Language.reverse_mem_reverse {α : Type u_1} {l : Language α} {a : List α} :
                                    @[simp]
                                    theorem Language.reverse_zero {α : Type u_1} :
                                    @[simp]
                                    theorem Language.reverse_one {α : Type u_1} :
                                    @[simp]
                                    theorem Language.reverse_reverse {α : Type u_1} (l : Language α) :
                                    @[simp]
                                    theorem Language.reverse_add {α : Type u_1} (l m : Language α) :
                                    @[simp]
                                    theorem Language.reverse_mul {α : Type u_1} (l m : Language α) :
                                    @[simp]
                                    theorem Language.reverse_iSup {α : Type u_1} {ι : Sort u_4} (l : ιLanguage α) :
                                    (⨆ (i : ι), l i).reverse = ⨆ (i : ι), (l i).reverse
                                    @[simp]
                                    theorem Language.reverse_iInf {α : Type u_1} {ι : Sort u_4} (l : ιLanguage α) :
                                    (⨅ (i : ι), l i).reverse = ⨅ (i : ι), (l i).reverse

                                    Language.reverse as a ring isomorphism to the opposite ring.

                                    Equations
                                      Instances For
                                        @[simp]
                                        @[simp]
                                        theorem Language.reverse_pow {α : Type u_1} (l : Language α) (n : ) :
                                        (l ^ n).reverse = l.reverse ^ n
                                        inductive Symbol (T : Type u_4) (N : Type u_5) :
                                        Type (max u_4 u_5)

                                        Symbols for use by all kinds of grammars.

                                        • terminal {T : Type u_4} {N : Type u_5} (t : T) : Symbol T N

                                          Terminal symbols (of the same type as the language)

                                        • nonterminal {T : Type u_4} {N : Type u_5} (n : N) : Symbol T N

                                          Nonterminal symbols (must not be present when the word being generated is finalized)

                                        Instances For
                                          instance instDecidableEqSymbol {T✝ : Type u_4} {N✝ : Type u_5} [DecidableEq T✝] [DecidableEq N✝] :
                                          DecidableEq (Symbol T✝ N✝)
                                          Equations
                                            instance instReprSymbol {T✝ : Type u_4} {N✝ : Type u_5} [Repr T✝] [Repr N✝] :
                                            Repr (Symbol T✝ N✝)
                                            Equations
                                              instance instFintypeSymbol {T✝ : Type u_4} {N✝ : Type u_5} [Fintype T✝] [Fintype N✝] :
                                              Fintype (Symbol T✝ N✝)
                                              Equations