Light condensed R
-modules #
This files defines light condensed modules over a ring R
.
Main results #
Light condensed
R
-modules form an abelian category.The forgetful functor from light condensed
R
-modules to light condensed sets has a left adjoint, sending a light condensed set to the corresponding free light condensedR
-module.
Equations
The forgetful functor from condensed R
-modules to condensed sets.
Equations
Instances For
The left adjoint to the forgetful functor. The free condensed R
-module on a condensed set.
Equations
Instances For
@[reducible, inline]
The category of condensed abelian groups, defined as sheaves of abelian groups over
CompHaus
with respect to the coherent Grothendieck topology.
Equations
Instances For
theorem
LightCondMod.hom_naturality_apply
(R : Type u)
[Ring R]
{X Y : LightCondMod R}
(f : X ⟶ Y)
{S T : LightProfiniteᵒᵖ}
(g : S ⟶ T)
(x : ↑(X.val.obj S))
:
(CategoryTheory.ConcreteCategory.hom (f.val.app T)) ((CategoryTheory.ConcreteCategory.hom (X.val.map g)) x) = (CategoryTheory.ConcreteCategory.hom (Y.val.map g)) ((CategoryTheory.ConcreteCategory.hom (f.val.app S)) x)