Documentation

Mathlib.Data.DFinsupp.Multiset

Equivalence between Multiset and -valued finitely supported functions #

This defines DFinsupp.toMultiset the equivalence between Π₀ a : α, ℕ and Multiset α, along with Multiset.toDFinsupp the reverse equivalence.

instance DFinsupp.addZeroClass' {α : Type u_1} {β : Type u_2} [AddZeroClass β] :
AddZeroClass (Π₀ (x : α), β)

Non-dependent special case of DFinsupp.addZeroClass to help typeclass search.

Equations
    def DFinsupp.toMultiset {α : Type u_1} [DecidableEq α] :
    (Π₀ (x : α), ) →+ Multiset α

    A DFinsupp version of Finsupp.toMultiset.

    Equations
      Instances For
        @[simp]
        theorem DFinsupp.toMultiset_single {α : Type u_1} [DecidableEq α] (a : α) (n : ) :
        def Multiset.toDFinsupp {α : Type u_1} [DecidableEq α] :
        Multiset α →+ Π₀ (x : α),

        A DFinsupp version of Multiset.toFinsupp.

        Equations
          Instances For
            @[simp]
            theorem Multiset.toDFinsupp_apply {α : Type u_1} [DecidableEq α] (s : Multiset α) (a : α) :
            (toDFinsupp s) a = count a s
            @[simp]
            @[simp]
            theorem Multiset.toDFinsupp_replicate {α : Type u_1} [DecidableEq α] (a : α) (n : ) :
            @[simp]
            def Multiset.equivDFinsupp {α : Type u_1} [DecidableEq α] :
            Multiset α ≃+ Π₀ (x : α),

            Multiset.toDFinsupp as an AddEquiv.

            Equations
              Instances For
                @[simp]
                theorem Multiset.toDFinsupp_inj {α : Type u_1} [DecidableEq α] {s t : Multiset α} :
                @[simp]
                @[simp]
                theorem Multiset.toDFinsupp_inter {α : Type u_1} [DecidableEq α] (s t : Multiset α) :
                @[simp]
                theorem Multiset.toDFinsupp_union {α : Type u_1} [DecidableEq α] (s t : Multiset α) :
                @[simp]
                @[simp]
                theorem DFinsupp.toMultiset_inj {α : Type u_1} [DecidableEq α] {f g : Π₀ (_a : α), } :
                @[simp]
                theorem DFinsupp.toMultiset_le_toMultiset {α : Type u_1} [DecidableEq α] {f g : Π₀ (_a : α), } :
                @[simp]
                theorem DFinsupp.toMultiset_lt_toMultiset {α : Type u_1} [DecidableEq α] {f g : Π₀ (_a : α), } :
                @[simp]
                theorem DFinsupp.toMultiset_inf {α : Type u_1} [DecidableEq α] (f g : Π₀ (_a : α), ) :
                @[simp]
                theorem DFinsupp.toMultiset_sup {α : Type u_1} [DecidableEq α] (f g : Π₀ (_a : α), ) :