Documentation

Mathlib.Data.Finmap

Finite maps over Multiset #

Multisets of sigma types #

def Multiset.keys {α : Type u} {β : αType v} (s : Multiset (Sigma β)) :

Multiset of keys of an association multiset.

Equations
    Instances For
      @[simp]
      theorem Multiset.coe_keys {α : Type u} {β : αType v} {l : List (Sigma β)} :
      (↑l).keys = l.keys
      @[simp]
      theorem Multiset.keys_zero {α : Type u} {β : αType v} :
      keys 0 = 0
      @[simp]
      theorem Multiset.keys_cons {α : Type u} {β : αType v} {a : α} {b : β a} {s : Multiset (Sigma β)} :
      (a, b ::ₘ s).keys = a ::ₘ s.keys
      @[simp]
      theorem Multiset.keys_singleton {α : Type u} {β : αType v} {a : α} {b : β a} :
      def Multiset.NodupKeys {α : Type u} {β : αType v} (s : Multiset (Sigma β)) :

      NodupKeys s means that s has no duplicate keys.

      Equations
        Instances For
          @[simp]
          theorem Multiset.coe_nodupKeys {α : Type u} {β : αType v} {l : List (Sigma β)} :
          theorem Multiset.nodup_keys {α : Type u} {β : αType v} {m : Multiset ((a : α) × β a)} :
          theorem Multiset.NodupKeys.nodup_keys {α : Type u} {β : αType v} {m : Multiset ((a : α) × β a)} :

          Alias of the reverse direction of Multiset.nodup_keys.

          theorem Multiset.NodupKeys.nodup {α : Type u} {β : αType v} {m : Multiset ((a : α) × β a)} (h : m.NodupKeys) :

          Finmap #

          structure Finmap {α : Type u} (β : αType v) :
          Type (max u v)

          Finmap β is the type of finite maps over a multiset. It is effectively a quotient of AList β by permutation of the underlying list.

          Instances For
            def AList.toFinmap {α : Type u} {β : αType v} (s : AList β) :

            The quotient map from AList to Finmap.

            Equations
              Instances For
                theorem AList.toFinmap_eq {α : Type u} {β : αType v} {s₁ s₂ : AList β} :
                s₁.toFinmap = s₂.toFinmap s₁.entries.Perm s₂.entries
                @[simp]
                theorem AList.toFinmap_entries {α : Type u} {β : αType v} (s : AList β) :
                def List.toFinmap {α : Type u} {β : αType v} [DecidableEq α] (s : List (Sigma β)) :

                Given l : List (Sigma β), create a term of type Finmap β by removing entries with duplicate keys.

                Equations
                  Instances For
                    theorem Finmap.nodup_entries {α : Type u} {β : αType v} (f : Finmap β) :

                    Lifting from AList #

                    def Finmap.liftOn {α : Type u} {β : αType v} {γ : Type u_1} (s : Finmap β) (f : AList βγ) (H : ∀ (a b : AList β), a.entries.Perm b.entriesf a = f b) :
                    γ

                    Lift a permutation-respecting function on AList to Finmap.

                    Equations
                      Instances For
                        @[simp]
                        theorem Finmap.liftOn_toFinmap {α : Type u} {β : αType v} {γ : Type u_1} (s : AList β) (f : AList βγ) (H : ∀ (a b : AList β), a.entries.Perm b.entriesf a = f b) :
                        s.toFinmap.liftOn f H = f s
                        def Finmap.liftOn₂ {α : Type u} {β : αType v} {γ : Type u_1} (s₁ s₂ : Finmap β) (f : AList βAList βγ) (H : ∀ (a₁ b₁ a₂ b₂ : AList β), a₁.entries.Perm a₂.entriesb₁.entries.Perm b₂.entriesf a₁ b₁ = f a₂ b₂) :
                        γ

                        Lift a permutation-respecting function on 2 ALists to 2 Finmaps.

                        Equations
                          Instances For
                            @[simp]
                            theorem Finmap.liftOn₂_toFinmap {α : Type u} {β : αType v} {γ : Type u_1} (s₁ s₂ : AList β) (f : AList βAList βγ) (H : ∀ (a₁ b₁ a₂ b₂ : AList β), a₁.entries.Perm a₂.entriesb₁.entries.Perm b₂.entriesf a₁ b₁ = f a₂ b₂) :
                            s₁.toFinmap.liftOn₂ s₂.toFinmap f H = f s₁ s₂

                            Induction #

                            theorem Finmap.induction_on {α : Type u} {β : αType v} {C : Finmap βProp} (s : Finmap β) (H : ∀ (a : AList β), C a.toFinmap) :
                            C s
                            theorem Finmap.induction_on₂ {α : Type u} {β : αType v} {C : Finmap βFinmap βProp} (s₁ s₂ : Finmap β) (H : ∀ (a₁ a₂ : AList β), C a₁.toFinmap a₂.toFinmap) :
                            C s₁ s₂
                            theorem Finmap.induction_on₃ {α : Type u} {β : αType v} {C : Finmap βFinmap βFinmap βProp} (s₁ s₂ s₃ : Finmap β) (H : ∀ (a₁ a₂ a₃ : AList β), C a₁.toFinmap a₂.toFinmap a₃.toFinmap) :
                            C s₁ s₂ s₃

                            extensionality #

                            theorem Finmap.ext {α : Type u} {β : αType v} {s t : Finmap β} :
                            s.entries = t.entriess = t
                            theorem Finmap.ext_iff {α : Type u} {β : αType v} {s t : Finmap β} :
                            @[simp]
                            theorem Finmap.ext_iff' {α : Type u} {β : αType v} {s t : Finmap β} :

                            mem #

                            instance Finmap.instMembership {α : Type u} {β : αType v} :

                            The predicate a ∈ s means that s has a value associated to the key a.

                            Equations
                              theorem Finmap.mem_def {α : Type u} {β : αType v} {a : α} {s : Finmap β} :
                              @[simp]
                              theorem Finmap.mem_toFinmap {α : Type u} {β : αType v} {a : α} {s : AList β} :

                              keys #

                              def Finmap.keys {α : Type u} {β : αType v} (s : Finmap β) :

                              The set of keys of a finite map.

                              Equations
                                Instances For
                                  @[simp]
                                  theorem Finmap.keys_val {α : Type u} {β : αType v} (s : AList β) :
                                  @[simp]
                                  theorem Finmap.keys_ext {α : Type u} {β : αType v} {s₁ s₂ : AList β} :
                                  s₁.toFinmap.keys = s₂.toFinmap.keys s₁.keys.Perm s₂.keys
                                  theorem Finmap.mem_keys {α : Type u} {β : αType v} {a : α} {s : Finmap β} :
                                  a s.keys a s

                                  empty #

                                  instance Finmap.instEmptyCollection {α : Type u} {β : αType v} :

                                  The empty map.

                                  Equations
                                    instance Finmap.instInhabited {α : Type u} {β : αType v} :
                                    Equations
                                      @[simp]
                                      theorem Finmap.empty_toFinmap {α : Type u} {β : αType v} :
                                      @[simp]
                                      theorem Finmap.toFinmap_nil {α : Type u} {β : αType v} [DecidableEq α] :
                                      theorem Finmap.notMem_empty {α : Type u} {β : αType v} {a : α} :
                                      a
                                      @[deprecated Finmap.notMem_empty (since := "2025-05-23")]
                                      theorem Finmap.not_mem_empty {α : Type u} {β : αType v} {a : α} :
                                      a

                                      Alias of Finmap.notMem_empty.

                                      @[simp]
                                      theorem Finmap.keys_empty {α : Type u} {β : αType v} :

                                      singleton #

                                      def Finmap.singleton {α : Type u} {β : αType v} (a : α) (b : β a) :

                                      The singleton map.

                                      Equations
                                        Instances For
                                          @[simp]
                                          theorem Finmap.keys_singleton {α : Type u} {β : αType v} (a : α) (b : β a) :
                                          @[simp]
                                          theorem Finmap.mem_singleton {α : Type u} {β : αType v} (x y : α) (b : β y) :
                                          x singleton y b x = y
                                          instance Finmap.decidableEq {α : Type u} {β : αType v} [DecidableEq α] [(a : α) → DecidableEq (β a)] :
                                          Equations

                                            lookup #

                                            def Finmap.lookup {α : Type u} {β : αType v} [DecidableEq α] (a : α) (s : Finmap β) :
                                            Option (β a)

                                            Look up the value associated to a key in a map.

                                            Equations
                                              Instances For
                                                @[simp]
                                                theorem Finmap.lookup_toFinmap {α : Type u} {β : αType v} [DecidableEq α] (a : α) (s : AList β) :
                                                @[simp]
                                                theorem Finmap.dlookup_list_toFinmap {α : Type u} {β : αType v} [DecidableEq α] (a : α) (s : List (Sigma β)) :
                                                @[simp]
                                                theorem Finmap.lookup_empty {α : Type u} {β : αType v} [DecidableEq α] (a : α) :
                                                theorem Finmap.lookup_isSome {α : Type u} {β : αType v} [DecidableEq α] {a : α} {s : Finmap β} :
                                                theorem Finmap.lookup_eq_none {α : Type u} {β : αType v} [DecidableEq α] {a : α} {s : Finmap β} :
                                                lookup a s = none as
                                                theorem Finmap.mem_lookup_iff {α : Type u} {β : αType v} [DecidableEq α] {s : Finmap β} {a : α} {b : β a} :
                                                theorem Finmap.lookup_eq_some_iff {α : Type u} {β : αType v} [DecidableEq α] {s : Finmap β} {a : α} {b : β a} :
                                                @[simp]
                                                theorem Finmap.sigma_keys_lookup {α : Type u} {β : αType v} [DecidableEq α] (s : Finmap β) :
                                                (s.keys.sigma fun (i : α) => (lookup i s).toFinset) = { val := s.entries, nodup := }
                                                @[simp]
                                                theorem Finmap.lookup_singleton_eq {α : Type u} {β : αType v} [DecidableEq α] {a : α} {b : β a} :
                                                instance Finmap.instDecidableMem {α : Type u} {β : αType v} [DecidableEq α] (a : α) (s : Finmap β) :
                                                Equations
                                                  theorem Finmap.mem_iff {α : Type u} {β : αType v} [DecidableEq α] {a : α} {s : Finmap β} :
                                                  a s ∃ (b : β a), lookup a s = some b
                                                  theorem Finmap.mem_of_lookup_eq_some {α : Type u} {β : αType v} [DecidableEq α] {a : α} {b : β a} {s : Finmap β} (h : lookup a s = some b) :
                                                  a s
                                                  theorem Finmap.ext_lookup {α : Type u} {β : αType v} [DecidableEq α] {s₁ s₂ : Finmap β} :
                                                  (∀ (x : α), lookup x s₁ = lookup x s₂)s₁ = s₂
                                                  def Finmap.keysLookupEquiv {α : Type u} {β : αType v} [DecidableEq α] :
                                                  Finmap β { f : Finset α × ((a : α) → Option (β a)) // ∀ (i : α), (f.2 i).isSome = true i f.1 }

                                                  An equivalence between Finmap β and pairs (keys : Finset α, lookup : ∀ a, Option (β a)) such that (lookup a).isSome ↔ a ∈ keys.

                                                  Equations
                                                    Instances For
                                                      @[simp]
                                                      theorem Finmap.keysLookupEquiv_apply_coe_fst {α : Type u} {β : αType v} [DecidableEq α] (s : Finmap β) :
                                                      (↑(keysLookupEquiv s)).1 = s.keys
                                                      @[simp]
                                                      theorem Finmap.keysLookupEquiv_apply_coe_snd {α : Type u} {β : αType v} [DecidableEq α] (s : Finmap β) (i : α) :
                                                      (↑(keysLookupEquiv s)).2 i = lookup i s
                                                      @[simp]
                                                      theorem Finmap.keysLookupEquiv_symm_apply_keys {α : Type u} {β : αType v} [DecidableEq α] (f : { f : Finset α × ((a : α) → Option (β a)) // ∀ (i : α), (f.2 i).isSome = true i f.1 }) :
                                                      (keysLookupEquiv.symm f).keys = (↑f).1
                                                      @[simp]
                                                      theorem Finmap.keysLookupEquiv_symm_apply_lookup {α : Type u} {β : αType v} [DecidableEq α] (f : { f : Finset α × ((a : α) → Option (β a)) // ∀ (i : α), (f.2 i).isSome = true i f.1 }) (a : α) :
                                                      lookup a (keysLookupEquiv.symm f) = (↑f).2 a

                                                      replace #

                                                      def Finmap.replace {α : Type u} {β : αType v} [DecidableEq α] (a : α) (b : β a) (s : Finmap β) :

                                                      Replace a key with a given value in a finite map. If the key is not present it does nothing.

                                                      Equations
                                                        Instances For
                                                          @[simp]
                                                          theorem Finmap.replace_toFinmap {α : Type u} {β : αType v} [DecidableEq α] (a : α) (b : β a) (s : AList β) :
                                                          @[simp]
                                                          theorem Finmap.keys_replace {α : Type u} {β : αType v} [DecidableEq α] (a : α) (b : β a) (s : Finmap β) :
                                                          (replace a b s).keys = s.keys
                                                          @[simp]
                                                          theorem Finmap.mem_replace {α : Type u} {β : αType v} [DecidableEq α] {a a' : α} {b : β a} {s : Finmap β} :
                                                          a' replace a b s a' s

                                                          foldl #

                                                          def Finmap.foldl {α : Type u} {β : αType v} {δ : Type w} (f : δ(a : α) → β aδ) (H : ∀ (d : δ) (a₁ : α) (b₁ : β a₁) (a₂ : α) (b₂ : β a₂), f (f d a₁ b₁) a₂ b₂ = f (f d a₂ b₂) a₁ b₁) (d : δ) (m : Finmap β) :
                                                          δ

                                                          Fold a commutative function over the key-value pairs in the map

                                                          Equations
                                                            Instances For
                                                              def Finmap.any {α : Type u} {β : αType v} (f : (x : α) → β xBool) (s : Finmap β) :

                                                              any f s returns true iff there exists a value v in s such that f v = true.

                                                              Equations
                                                                Instances For
                                                                  def Finmap.all {α : Type u} {β : αType v} (f : (x : α) → β xBool) (s : Finmap β) :

                                                                  all f s returns true iff f v = true for all values v in s.

                                                                  Equations
                                                                    Instances For

                                                                      erase #

                                                                      def Finmap.erase {α : Type u} {β : αType v} [DecidableEq α] (a : α) (s : Finmap β) :

                                                                      Erase a key from the map. If the key is not present it does nothing.

                                                                      Equations
                                                                        Instances For
                                                                          @[simp]
                                                                          theorem Finmap.erase_toFinmap {α : Type u} {β : αType v} [DecidableEq α] (a : α) (s : AList β) :
                                                                          @[simp]
                                                                          theorem Finmap.keys_erase_toFinset {α : Type u} {β : αType v} [DecidableEq α] (a : α) (s : AList β) :
                                                                          @[simp]
                                                                          theorem Finmap.keys_erase {α : Type u} {β : αType v} [DecidableEq α] (a : α) (s : Finmap β) :
                                                                          (erase a s).keys = s.keys.erase a
                                                                          @[simp]
                                                                          theorem Finmap.mem_erase {α : Type u} {β : αType v} [DecidableEq α] {a a' : α} {s : Finmap β} :
                                                                          a' erase a s a' a a' s
                                                                          theorem Finmap.notMem_erase_self {α : Type u} {β : αType v} [DecidableEq α] {a : α} {s : Finmap β} :
                                                                          aerase a s
                                                                          @[deprecated Finmap.notMem_erase_self (since := "2025-05-23")]
                                                                          theorem Finmap.not_mem_erase_self {α : Type u} {β : αType v} [DecidableEq α] {a : α} {s : Finmap β} :
                                                                          aerase a s

                                                                          Alias of Finmap.notMem_erase_self.

                                                                          @[simp]
                                                                          theorem Finmap.lookup_erase {α : Type u} {β : αType v} [DecidableEq α] (a : α) (s : Finmap β) :
                                                                          lookup a (erase a s) = none
                                                                          @[simp]
                                                                          theorem Finmap.lookup_erase_ne {α : Type u} {β : αType v} [DecidableEq α] {a a' : α} {s : Finmap β} (h : a a') :
                                                                          lookup a (erase a' s) = lookup a s
                                                                          theorem Finmap.erase_erase {α : Type u} {β : αType v} [DecidableEq α] {a a' : α} {s : Finmap β} :
                                                                          erase a (erase a' s) = erase a' (erase a s)

                                                                          sdiff #

                                                                          def Finmap.sdiff {α : Type u} {β : αType v} [DecidableEq α] (s s' : Finmap β) :

                                                                          sdiff s s' consists of all key-value pairs from s and s' where the keys are in s or s' but not both.

                                                                          Equations
                                                                            Instances For
                                                                              instance Finmap.instSDiff {α : Type u} {β : αType v} [DecidableEq α] :
                                                                              Equations

                                                                                insert #

                                                                                def Finmap.insert {α : Type u} {β : αType v} [DecidableEq α] (a : α) (b : β a) (s : Finmap β) :

                                                                                Insert a key-value pair into a finite map, replacing any existing pair with the same key.

                                                                                Equations
                                                                                  Instances For
                                                                                    @[simp]
                                                                                    theorem Finmap.insert_toFinmap {α : Type u} {β : αType v} [DecidableEq α] (a : α) (b : β a) (s : AList β) :
                                                                                    theorem Finmap.entries_insert_of_notMem {α : Type u} {β : αType v} [DecidableEq α] {a : α} {b : β a} {s : Finmap β} :
                                                                                    as(insert a b s).entries = a, b ::ₘ s.entries
                                                                                    @[deprecated Finmap.entries_insert_of_notMem (since := "2025-05-23")]
                                                                                    theorem Finmap.entries_insert_of_not_mem {α : Type u} {β : αType v} [DecidableEq α] {a : α} {b : β a} {s : Finmap β} :
                                                                                    as(insert a b s).entries = a, b ::ₘ s.entries

                                                                                    Alias of Finmap.entries_insert_of_notMem.

                                                                                    @[simp]
                                                                                    theorem Finmap.mem_insert {α : Type u} {β : αType v} [DecidableEq α] {a a' : α} {b' : β a'} {s : Finmap β} :
                                                                                    a insert a' b' s a = a' a s
                                                                                    @[simp]
                                                                                    theorem Finmap.lookup_insert {α : Type u} {β : αType v} [DecidableEq α] {a : α} {b : β a} (s : Finmap β) :
                                                                                    lookup a (insert a b s) = some b
                                                                                    @[simp]
                                                                                    theorem Finmap.lookup_insert_of_ne {α : Type u} {β : αType v} [DecidableEq α] {a a' : α} {b : β a} (s : Finmap β) (h : a' a) :
                                                                                    lookup a' (insert a b s) = lookup a' s
                                                                                    @[simp]
                                                                                    theorem Finmap.insert_insert {α : Type u} {β : αType v} [DecidableEq α] {a : α} {b b' : β a} (s : Finmap β) :
                                                                                    insert a b' (insert a b s) = insert a b' s
                                                                                    theorem Finmap.insert_insert_of_ne {α : Type u} {β : αType v} [DecidableEq α] {a a' : α} {b : β a} {b' : β a'} (s : Finmap β) (h : a a') :
                                                                                    insert a' b' (insert a b s) = insert a b (insert a' b' s)
                                                                                    theorem Finmap.toFinmap_cons {α : Type u} {β : αType v} [DecidableEq α] (a : α) (b : β a) (xs : List (Sigma β)) :
                                                                                    (a, b :: xs).toFinmap = insert a b xs.toFinmap
                                                                                    theorem Finmap.mem_list_toFinmap {α : Type u} {β : αType v} [DecidableEq α] (a : α) (xs : List (Sigma β)) :
                                                                                    a xs.toFinmap ∃ (b : β a), a, b xs
                                                                                    @[simp]
                                                                                    theorem Finmap.insert_singleton_eq {α : Type u} {β : αType v} [DecidableEq α] {a : α} {b b' : β a} :
                                                                                    insert a b (singleton a b') = singleton a b

                                                                                    extract #

                                                                                    def Finmap.extract {α : Type u} {β : αType v} [DecidableEq α] (a : α) (s : Finmap β) :
                                                                                    Option (β a) × Finmap β

                                                                                    Erase a key from the map, and return the corresponding value, if found.

                                                                                    Equations
                                                                                      Instances For
                                                                                        @[simp]
                                                                                        theorem Finmap.extract_eq_lookup_erase {α : Type u} {β : αType v} [DecidableEq α] (a : α) (s : Finmap β) :
                                                                                        extract a s = (lookup a s, erase a s)

                                                                                        union #

                                                                                        def Finmap.union {α : Type u} {β : αType v} [DecidableEq α] (s₁ s₂ : Finmap β) :

                                                                                        s₁ ∪ s₂ is the key-based union of two finite maps. It is left-biased: if there exists an a ∈ s₁, lookup a (s₁ ∪ s₂) = lookup a s₁.

                                                                                        Equations
                                                                                          Instances For
                                                                                            instance Finmap.instUnion {α : Type u} {β : αType v} [DecidableEq α] :
                                                                                            Equations
                                                                                              @[simp]
                                                                                              theorem Finmap.mem_union {α : Type u} {β : αType v} [DecidableEq α] {a : α} {s₁ s₂ : Finmap β} :
                                                                                              a s₁ s₂ a s₁ a s₂
                                                                                              @[simp]
                                                                                              theorem Finmap.union_toFinmap {α : Type u} {β : αType v} [DecidableEq α] (s₁ s₂ : AList β) :
                                                                                              s₁.toFinmap s₂.toFinmap = (s₁ s₂).toFinmap
                                                                                              theorem Finmap.keys_union {α : Type u} {β : αType v} [DecidableEq α] {s₁ s₂ : Finmap β} :
                                                                                              (s₁ s₂).keys = s₁.keys s₂.keys
                                                                                              @[simp]
                                                                                              theorem Finmap.lookup_union_left {α : Type u} {β : αType v} [DecidableEq α] {a : α} {s₁ s₂ : Finmap β} :
                                                                                              a s₁lookup a (s₁ s₂) = lookup a s₁
                                                                                              @[simp]
                                                                                              theorem Finmap.lookup_union_right {α : Type u} {β : αType v} [DecidableEq α] {a : α} {s₁ s₂ : Finmap β} :
                                                                                              as₁lookup a (s₁ s₂) = lookup a s₂
                                                                                              theorem Finmap.lookup_union_left_of_not_in {α : Type u} {β : αType v} [DecidableEq α] {a : α} {s₁ s₂ : Finmap β} (h : as₂) :
                                                                                              lookup a (s₁ s₂) = lookup a s₁
                                                                                              @[simp]
                                                                                              theorem Finmap.mem_lookup_union' {α : Type u} {β : αType v} [DecidableEq α] {a : α} {b : β a} {s₁ s₂ : Finmap β} :
                                                                                              lookup a (s₁ s₂) = some b b lookup a s₁ as₁ b lookup a s₂

                                                                                              simp-normal form of mem_lookup_union

                                                                                              theorem Finmap.mem_lookup_union {α : Type u} {β : αType v} [DecidableEq α] {a : α} {b : β a} {s₁ s₂ : Finmap β} :
                                                                                              b lookup a (s₁ s₂) b lookup a s₁ as₁ b lookup a s₂
                                                                                              theorem Finmap.mem_lookup_union_middle {α : Type u} {β : αType v} [DecidableEq α] {a : α} {b : β a} {s₁ s₂ s₃ : Finmap β} :
                                                                                              b lookup a (s₁ s₃)as₂b lookup a (s₁ s₂ s₃)
                                                                                              theorem Finmap.insert_union {α : Type u} {β : αType v} [DecidableEq α] {a : α} {b : β a} {s₁ s₂ : Finmap β} :
                                                                                              insert a b (s₁ s₂) = insert a b s₁ s₂
                                                                                              theorem Finmap.union_assoc {α : Type u} {β : αType v} [DecidableEq α] {s₁ s₂ s₃ : Finmap β} :
                                                                                              s₁ s₂ s₃ = s₁ (s₂ s₃)
                                                                                              @[simp]
                                                                                              theorem Finmap.empty_union {α : Type u} {β : αType v} [DecidableEq α] {s₁ : Finmap β} :
                                                                                              s₁ = s₁
                                                                                              @[simp]
                                                                                              theorem Finmap.union_empty {α : Type u} {β : αType v} [DecidableEq α] {s₁ : Finmap β} :
                                                                                              s₁ = s₁
                                                                                              theorem Finmap.erase_union_singleton {α : Type u} {β : αType v} [DecidableEq α] (a : α) (b : β a) (s : Finmap β) (h : lookup a s = some b) :
                                                                                              erase a s singleton a b = s

                                                                                              Disjoint #

                                                                                              def Finmap.Disjoint {α : Type u} {β : αType v} (s₁ s₂ : Finmap β) :

                                                                                              Disjoint s₁ s₂ holds if s₁ and s₂ have no keys in common.

                                                                                              Equations
                                                                                                Instances For
                                                                                                  theorem Finmap.disjoint_empty {α : Type u} {β : αType v} (x : Finmap β) :
                                                                                                  theorem Finmap.Disjoint.symm {α : Type u} {β : αType v} (x y : Finmap β) (h : x.Disjoint y) :
                                                                                                  theorem Finmap.Disjoint.symm_iff {α : Type u} {β : αType v} (x y : Finmap β) :
                                                                                                  Equations
                                                                                                    theorem Finmap.disjoint_union_left {α : Type u} {β : αType v} [DecidableEq α] (x y z : Finmap β) :
                                                                                                    theorem Finmap.disjoint_union_right {α : Type u} {β : αType v} [DecidableEq α] (x y z : Finmap β) :
                                                                                                    theorem Finmap.union_comm_of_disjoint {α : Type u} {β : αType v} [DecidableEq α] {s₁ s₂ : Finmap β} :
                                                                                                    s₁.Disjoint s₂s₁ s₂ = s₂ s₁
                                                                                                    theorem Finmap.union_cancel {α : Type u} {β : αType v} [DecidableEq α] {s₁ s₂ s₃ : Finmap β} (h : s₁.Disjoint s₃) (h' : s₂.Disjoint s₃) :
                                                                                                    s₁ s₃ = s₂ s₃ s₁ = s₂