Documentation

Mathlib.Data.Finsupp.MonomialOrder.DegLex

Homogeneous lexicographic monomial ordering

The type synonym is DegLex (σ →₀ ℕ) and the two lemmas MonomialOrder.degLex_le_iff and MonomialOrder.degLex_lt_iff rewrite the ordering as comparisons in the type Lex (σ →₀ ℕ).

References #

def DegLex (α : Type u_1) :
Type u_1

A type synonym to equip a type with its lexicographic order sorted by degrees.

Equations
    Instances For
      @[match_pattern]
      def toDegLex {α : Type u_1} :
      α DegLex α

      toDegLex is the identity function to the DegLex of a type.

      Equations
        Instances For
          theorem toDegLex_inj {α : Type u_1} {a b : α} :
          @[match_pattern]
          def ofDegLex {α : Type u_1} :
          DegLex α α

          ofDegLex is the identity function from the DegLex of a type.

          Equations
            Instances For
              theorem ofDegLex_inj {α : Type u_1} {a b : DegLex α} :
              @[simp]
              @[simp]
              @[simp]
              theorem ofDegLex_toDegLex {α : Type u_1} (a : α) :
              @[simp]
              theorem toDegLex_ofDegLex {α : Type u_1} (a : DegLex α) :
              def DegLex.rec {α : Type u_1} {β : DegLex αSort u_2} (h : (a : α) → β (toDegLex a)) (a : DegLex α) :
              β a

              A recursor for DegLex. Use as induction x.

              Equations
                Instances For
                  @[simp]
                  theorem DegLex.forall_iff {α : Type u_1} {p : DegLex αProp} :
                  (∀ (a : DegLex α), p a) ∀ (a : α), p (toDegLex a)
                  @[simp]
                  theorem DegLex.exists_iff {α : Type u_1} {p : DegLex αProp} :
                  (∃ (a : DegLex α), p a) ∃ (a : α), p (toDegLex a)
                  noncomputable instance instAddCommMonoidDegLex {α : Type u_1} [AddCommMonoid α] :
                  Equations
                    theorem toDegLex_add {α : Type u_1} [AddCommMonoid α] (a b : α) :
                    theorem ofDegLex_add {α : Type u_1} [AddCommMonoid α] (a b : DegLex α) :
                    def Finsupp.DegLex {α : Type u_1} (r : ααProp) (s : Prop) :
                    (α →₀ ) → (α →₀ ) → Prop

                    Finsupp.DegLex r s is the homogeneous lexicographic order on α →₀ M, where α is ordered by r and M is ordered by s. The type synonym DegLex (α →₀ M) has an order given by Finsupp.DegLex (· < ·) (· < ·).

                    Equations
                      Instances For
                        theorem Finsupp.degLex_def {α : Type u_1} {r : ααProp} {s : Prop} {a b : α →₀ } :
                        theorem Finsupp.DegLex.wellFounded {α : Type u_1} {r : ααProp} [IsTrichotomous α r] (hr : WellFounded (Function.swap r)) {s : Prop} (hs : WellFounded s) (hs0 : ∀ ⦃n : ⦄, ¬s n 0) :
                        instance Finsupp.DegLex.instLTDegLexNat {α : Type u_1} [LT α] :
                        Equations
                          instance Finsupp.DegLex.isStrictOrder {α : Type u_1} [LinearOrder α] :
                          IsStrictOrder (DegLex (α →₀ )) fun (x1 x2 : DegLex (α →₀ )) => x1 < x2

                          The linear order on Finsupps obtained by the homogeneous lexicographic ordering.

                          Equations
                            theorem Finsupp.DegLex.single_strictAnti {α : Type u_1} [LinearOrder α] :
                            StrictAnti fun (a : α) => toDegLex (single a 1)
                            theorem Finsupp.DegLex.single_antitone {α : Type u_1} [LinearOrder α] :
                            Antitone fun (a : α) => toDegLex (single a 1)
                            theorem Finsupp.DegLex.single_lt_iff {α : Type u_1} [LinearOrder α] {a b : α} :
                            toDegLex (single b 1) < toDegLex (single a 1) a < b
                            theorem Finsupp.DegLex.single_le_iff {α : Type u_1} [LinearOrder α] {a b : α} :
                            noncomputable instance Finsupp.DegLex.orderBot {α : Type u_1} [LinearOrder α] :
                            Equations
                              noncomputable def MonomialOrder.degLex {σ : Type u_2} [LinearOrder σ] [WellFoundedGT σ] :

                              The deg-lexicographic order on σ →₀ ℕ, as a MonomialOrder

                              Equations
                                Instances For