Documentation

Mathlib.Data.Nat.PSub

Partial predecessor and partial subtraction on the natural numbers #

The usual definition of natural number subtraction (Nat.sub) returns 0 as a "garbage value" for a - b when a < b. Similarly, Nat.pred 0 is defined to be 0. The functions in this file wrap the result in an Option type instead:

Main definitions #

Partial predecessor operation. Returns ppred n = some m if n = m + 1, otherwise none.

Equations
    Instances For
      @[simp]
      @[simp]
      theorem Nat.ppred_succ {n : } :
      def Nat.psub (m : ) :

      Partial subtraction operation. Returns psub m n = some k if m = n + k, otherwise none.

      Equations
        Instances For
          @[simp]
          theorem Nat.psub_zero {m : } :
          m.psub 0 = some m
          @[simp]
          theorem Nat.psub_succ {m n : } :
          theorem Nat.sub_eq_psub (m n : ) :
          m - n = (m.psub n).getD 0
          @[simp]
          theorem Nat.ppred_eq_some {m n : } :
          n.ppred = some m m.succ = n
          @[simp]
          theorem Nat.ppred_eq_none {n : } :
          n.ppred = none n = 0
          theorem Nat.psub_eq_some {m n k : } :
          m.psub n = some k k + n = m
          theorem Nat.psub_eq_none {m n : } :
          m.psub n = none m < n
          theorem Nat.ppred_eq_pred {n : } (h : 0 < n) :
          theorem Nat.psub_eq_sub {m n : } (h : n m) :
          m.psub n = some (m - n)
          theorem Nat.psub_add (m n k : ) :
          m.psub (n + k) = do let __do_liftm.psub n __do_lift.psub k
          @[inline]
          def Nat.psub' (m n : ) :

          Same as psub, but with a more efficient implementation.

          Equations
            Instances For
              theorem Nat.psub'_eq_psub (m n : ) :
              m.psub' n = m.psub n