Documentation

Mathlib.Data.PFunctor.Univariate.Basic

Polynomial Functors #

This file defines polynomial functors and the W-type construction as a polynomial functor. (For the M-type construction, see Mathlib/Data/PFunctor/Univariate/M.lean.)

structure PFunctor :
Type (max (uA + 1) (uB + 1))

A polynomial functor P is given by a type A and a family B of types over A. P maps any type α to a new type P α, which is defined as the sigma type Σ x, P.B x → α.

An element of P α is a pair ⟨a, f⟩, where a is an element of a type A and f : B a → α. Think of a as the shape of the object and f as an index to the relevant elements of α.

  • A : Type uA

    The head type

  • B : self.AType uB

    The child family of types

Instances For
    def PFunctor.Obj (P : PFunctor.{uA, uB}) (α : Type v) :
    Type (max v uA uB)

    Applying P to an object of Type

    Equations
      Instances For
        Equations
          def PFunctor.map (P : PFunctor.{uA, uB}) {α : Type v₁} {β : Type v₂} (f : αβ) :
          P αP β

          Applying P to a morphism of Type

          Equations
            Instances For
              instance PFunctor.Obj.inhabited (P : PFunctor.{uA, uB}) {α : Type v₁} [Inhabited P.A] [Inhabited α] :
              Inhabited (P α)
              Equations
                @[simp]
                theorem PFunctor.map_eq_map (P : PFunctor.{uA, uB}) {α β : Type v} (f : αβ) (x : P α) :
                f <$> x = P.map f x

                We prefer PFunctor.map to Functor.map because it is universe-polymorphic.

                @[simp]
                theorem PFunctor.map_eq (P : PFunctor.{uA, uB}) {α : Type v₁} {β : Type v₂} (f : αβ) (a : P.A) (g : P.B aα) :
                P.map f a, g = a, f g
                @[simp]
                theorem PFunctor.id_map (P : PFunctor.{uA, uB}) {α : Type v₁} (x : P α) :
                P.map id x = x
                @[simp]
                theorem PFunctor.map_map (P : PFunctor.{uA, uB}) {α : Type v₁} {β : Type v₂} {γ : Type v₃} (f : αβ) (g : βγ) (x : P α) :
                P.map g (P.map f x) = P.map (g f) x
                def PFunctor.W (P : PFunctor.{uA, uB}) :
                Type (max uA uB)

                Re-export existing definition of W-types and adapt it to a packaged definition of polynomial functor.

                Equations
                  Instances For

                    The root element of a W tree

                    Equations
                      Instances For
                        def PFunctor.W.children {P : PFunctor.{uA, uB}} (x : P.W) :
                        P.B x.headP.W

                        The children of the root of a W tree

                        Equations
                          Instances For
                            def PFunctor.W.dest {P : PFunctor.{uA, uB}} :
                            P.WP P.W

                            The destructor for W-types

                            Equations
                              Instances For
                                def PFunctor.W.mk {P : PFunctor.{uA, uB}} :
                                P P.WP.W

                                The constructor for W-types

                                Equations
                                  Instances For
                                    @[simp]
                                    theorem PFunctor.W.dest_mk {P : PFunctor.{uA, uB}} (p : P P.W) :
                                    (mk p).dest = p
                                    @[simp]
                                    theorem PFunctor.W.mk_dest {P : PFunctor.{uA, uB}} (p : P.W) :
                                    mk p.dest = p
                                    def PFunctor.Idx (P : PFunctor.{uA, uB}) :
                                    Type (max uA uB)

                                    Idx identifies a location inside the application of a polynomial functor. For F : PFunctor, x : F α and i : F.Idx, i can designate one part of x or is invalid, if i.1 ≠ x.1.

                                    Equations
                                      Instances For
                                        def PFunctor.Obj.iget {P : PFunctor.{uA, uB}} [DecidableEq P.A] {α : Type u_1} [Inhabited α] (x : P α) (i : P.Idx) :
                                        α

                                        x.iget i takes the component of x designated by i if any is or returns a default value

                                        Equations
                                          Instances For
                                            @[simp]
                                            theorem PFunctor.fst_map {P : PFunctor.{uA, uB}} {α : Type v₁} {β : Type v₂} (x : P α) (f : αβ) :
                                            (P.map f x).fst = x.fst
                                            @[simp]
                                            theorem PFunctor.iget_map {P : PFunctor.{uA, uB}} {α : Type v₁} {β : Type v₂} [DecidableEq P.A] [Inhabited α] [Inhabited β] (x : P α) (f : αβ) (i : P.Idx) (h : i.fst = x.fst) :
                                            (P.map f x).iget i = f (x.iget i)

                                            Composition for polynomial functors

                                            Equations
                                              Instances For
                                                def PFunctor.comp.mk (P₂ : PFunctor.{uA₂, uB₂}) (P₁ : PFunctor.{uA₁, uB₁}) {α : Type v} (x : P₂ (P₁ α)) :
                                                (P₂.comp P₁) α

                                                Constructor for composition

                                                Equations
                                                  Instances For
                                                    def PFunctor.comp.get (P₂ : PFunctor.{uA₂, uB₂}) (P₁ : PFunctor.{uA₁, uB₁}) {α : Type v} (x : (P₂.comp P₁) α) :
                                                    P₂ (P₁ α)

                                                    Destructor for composition

                                                    Equations
                                                      Instances For
                                                        theorem PFunctor.liftp_iff {P : PFunctor.{uA, uB}} {α : Type u} (p : αProp) (x : P α) :
                                                        Functor.Liftp p x ∃ (a : P.A) (f : P.B aα), x = a, f ∀ (i : P.B a), p (f i)
                                                        theorem PFunctor.liftp_iff' {P : PFunctor.{uA, uB}} {α : Type u} (p : αProp) (a : P.A) (f : P.B aα) :
                                                        Functor.Liftp p a, f ∀ (i : P.B a), p (f i)
                                                        theorem PFunctor.liftr_iff {P : PFunctor.{uA, uB}} {α : Type u} (r : ααProp) (x y : P α) :
                                                        Functor.Liftr r x y ∃ (a : P.A) (f₀ : P.B aα) (f₁ : P.B aα), x = a, f₀ y = a, f₁ ∀ (i : P.B a), r (f₀ i) (f₁ i)
                                                        theorem PFunctor.supp_eq {P : PFunctor.{uA, uB}} {α : Type u} (a : P.A) (f : P.B aα) :