Documentation

Mathlib.Data.QPF.Multivariate.Constructions.Prj

Projection functors are QPFs. The n-ary projection functors on i is an n-ary functor F such that F (α₀..αᵢ₋₁, αᵢ, αᵢ₊₁..αₙ₋₁) = αᵢ

def MvQPF.Prj {n : } (i : Fin2 n) (v : TypeVec.{u} n) :

The projection i functor

Equations
    Instances For
      instance MvQPF.Prj.inhabited {n : } (i : Fin2 n) {v : TypeVec.{u} n} [Inhabited (v i)] :
      Equations
        def MvQPF.Prj.map {n : } (i : Fin2 n) α : TypeVec.{u_1} n β : TypeVec.{u_2} n (f : α.Arrow β) :
        Prj i αPrj i β

        map on functor Prj i

        Equations
          Instances For
            instance MvQPF.Prj.mvfunctor {n : } (i : Fin2 n) :
            Equations
              def MvQPF.Prj.P {n : } (i : Fin2 n) :

              Polynomial representation of the projection functor

              Equations
                Instances For
                  def MvQPF.Prj.abs {n : } (i : Fin2 n) α : TypeVec.{u_1} n :
                  (P i) αPrj i α

                  Abstraction function of the QPF instance

                  Equations
                    Instances For
                      def MvQPF.Prj.repr {n : } (i : Fin2 n) α : TypeVec.{u_1} n :
                      Prj i α(P i) α

                      Representation function of the QPF instance

                      Equations
                        Instances For
                          instance MvQPF.Prj.mvqpf {n : } (i : Fin2 n) :
                          Equations