Dependent product and sum of QPFs are QPFs #
Dependent sum of an n
-ary functor. The sum can range over
data types like ℕ
or over Type.{u-1}
Equations
Instances For
Dependent product of an n
-ary functor. The sum can range over
data types like ℕ
or over Type.{u-1}
Equations
Instances For
instance
MvQPF.Sigma.inhabited
{n : ℕ}
{A : Type u}
(F : A → TypeVec.{u} n → Type u)
{α : TypeVec.{u} n}
[Inhabited A]
[Inhabited (F default α)]
:
Equations
instance
MvQPF.Pi.inhabited
{n : ℕ}
{A : Type u}
(F : A → TypeVec.{u} n → Type u)
{α : TypeVec.{u} n}
[(a : A) → Inhabited (F a α)]
:
Equations
instance
MvQPF.Sigma.instMvFunctor
{n : ℕ}
{A : Type u}
(F : A → TypeVec.{u} n → Type u)
[(α : A) → MvFunctor (F α)]
:
Equations
polynomial functor representation of a dependent sum
Equations
Instances For
def
MvQPF.Sigma.abs
{n : ℕ}
{A : Type u}
(F : A → TypeVec.{u} n → Type u)
[(α : A) → MvQPF (F α)]
⦃α : TypeVec.{u} n⦄
:
abstraction function for dependent sums
Equations
Instances For
def
MvQPF.Sigma.repr
{n : ℕ}
{A : Type u}
(F : A → TypeVec.{u} n → Type u)
[(α : A) → MvQPF (F α)]
⦃α : TypeVec.{u} n⦄
:
representation function for dependent sums
Equations
Instances For
instance
MvQPF.Sigma.inst
{n : ℕ}
{A : Type u}
(F : A → TypeVec.{u} n → Type u)
[(α : A) → MvQPF (F α)]
:
Equations
instance
MvQPF.Pi.instMvFunctor
{n : ℕ}
{A : Type u}
(F : A → TypeVec.{u} n → Type u)
[(α : A) → MvFunctor (F α)]
:
Equations
polynomial functor representation of a dependent product
Equations
Instances For
def
MvQPF.Pi.abs
{n : ℕ}
{A : Type u}
(F : A → TypeVec.{u} n → Type u)
[(α : A) → MvQPF (F α)]
⦃α : TypeVec.{u} n⦄
:
abstraction function for dependent products
Equations
Instances For
def
MvQPF.Pi.repr
{n : ℕ}
{A : Type u}
(F : A → TypeVec.{u} n → Type u)
[(α : A) → MvQPF (F α)]
⦃α : TypeVec.{u} n⦄
:
representation function for dependent products
Equations
Instances For
instance
MvQPF.Pi.inst
{n : ℕ}
{A : Type u}
(F : A → TypeVec.{u} n → Type u)
[(α : A) → MvQPF (F α)]
: