Documentation

Mathlib.Data.QPF.Multivariate.Constructions.Sigma

Dependent product and sum of QPFs are QPFs #

def MvQPF.Sigma {n : } {A : Type u} (F : ATypeVec.{u} nType u) (v : TypeVec.{u} n) :

Dependent sum of an n-ary functor. The sum can range over data types like or over Type.{u-1}

Equations
    Instances For
      def MvQPF.Pi {n : } {A : Type u} (F : ATypeVec.{u} nType u) (v : TypeVec.{u} n) :

      Dependent product of an n-ary functor. The sum can range over data types like or over Type.{u-1}

      Equations
        Instances For
          instance MvQPF.Sigma.inhabited {n : } {A : Type u} (F : ATypeVec.{u} nType u) {α : TypeVec.{u} n} [Inhabited A] [Inhabited (F default α)] :
          Equations
            instance MvQPF.Pi.inhabited {n : } {A : Type u} (F : ATypeVec.{u} nType u) {α : TypeVec.{u} n} [(a : A) → Inhabited (F a α)] :
            Inhabited (Pi F α)
            Equations
              instance MvQPF.Sigma.instMvFunctor {n : } {A : Type u} (F : ATypeVec.{u} nType u) [(α : A) → MvFunctor (F α)] :
              Equations
                def MvQPF.Sigma.P {n : } {A : Type u} (F : ATypeVec.{u} nType u) [(α : A) → MvQPF (F α)] :

                polynomial functor representation of a dependent sum

                Equations
                  Instances For
                    def MvQPF.Sigma.abs {n : } {A : Type u} (F : ATypeVec.{u} nType u) [(α : A) → MvQPF (F α)] α : TypeVec.{u} n :
                    (Sigma.P F) αSigma F α

                    abstraction function for dependent sums

                    Equations
                      Instances For
                        def MvQPF.Sigma.repr {n : } {A : Type u} (F : ATypeVec.{u} nType u) [(α : A) → MvQPF (F α)] α : TypeVec.{u} n :
                        Sigma F α(Sigma.P F) α

                        representation function for dependent sums

                        Equations
                          Instances For
                            instance MvQPF.Sigma.inst {n : } {A : Type u} (F : ATypeVec.{u} nType u) [(α : A) → MvQPF (F α)] :
                            Equations
                              instance MvQPF.Pi.instMvFunctor {n : } {A : Type u} (F : ATypeVec.{u} nType u) [(α : A) → MvFunctor (F α)] :
                              Equations
                                def MvQPF.Pi.P {n : } {A : Type u} (F : ATypeVec.{u} nType u) [(α : A) → MvQPF (F α)] :

                                polynomial functor representation of a dependent product

                                Equations
                                  Instances For
                                    def MvQPF.Pi.abs {n : } {A : Type u} (F : ATypeVec.{u} nType u) [(α : A) → MvQPF (F α)] α : TypeVec.{u} n :
                                    (Pi.P F) αPi F α

                                    abstraction function for dependent products

                                    Equations
                                      Instances For
                                        def MvQPF.Pi.repr {n : } {A : Type u} (F : ATypeVec.{u} nType u) [(α : A) → MvQPF (F α)] α : TypeVec.{u} n :
                                        Pi F α(Pi.P F) α

                                        representation function for dependent products

                                        Equations
                                          Instances For
                                            instance MvQPF.Pi.inst {n : } {A : Type u} (F : ATypeVec.{u} nType u) [(α : A) → MvQPF (F α)] :
                                            MvQPF (Pi F)
                                            Equations