Documentation

Mathlib.Data.Real.Sign

Real sign function #

This file introduces and contains some results about Real.sign which maps negative real numbers to -1, positive real numbers to 1, and 0 to 0.

Main definitions #

Tags #

sign function

noncomputable def Real.sign (r : ) :

The sign function that maps negative real numbers to -1, positive numbers to 1, and 0 otherwise.

Equations
    Instances For
      theorem Real.sign_of_neg {r : } (hr : r < 0) :
      r.sign = -1
      theorem Real.sign_of_pos {r : } (hr : 0 < r) :
      r.sign = 1
      @[simp]
      theorem Real.sign_zero :
      sign 0 = 0
      @[simp]
      theorem Real.sign_one :
      sign 1 = 1
      theorem Real.sign_apply_eq (r : ) :
      r.sign = -1 r.sign = 0 r.sign = 1
      theorem Real.sign_apply_eq_of_ne_zero (r : ) (h : r 0) :
      r.sign = -1 r.sign = 1

      This lemma is useful for working with ℝˣ

      @[simp]
      theorem Real.sign_eq_zero_iff {r : } :
      r.sign = 0 r = 0
      theorem Real.sign_intCast (z : ) :
      (↑z).sign = z.sign
      theorem Real.sign_neg {r : } :
      (-r).sign = -r.sign
      theorem Real.sign_mul_nonneg (r : ) :
      0 r.sign * r
      theorem Real.sign_mul_pos_of_ne_zero (r : ) (hr : r 0) :
      0 < r.sign * r
      @[simp]
      theorem Real.inv_sign (r : ) :
      @[simp]
      theorem Real.sign_inv (r : ) :