Set family operations #
This file defines a few binary operations on Set α
for use in set family combinatorics.
Main declarations #
s ⊻ t
: Set of elements of the forma ⊔ b
wherea ∈ s
,b ∈ t
.s ⊼ t
: Set of elements of the forma ⊓ b
wherea ∈ s
,b ∈ t
.
Notation #
We define the following notation in locale SetFamily
:
s ⊻ t
s ⊼ t
References #
[B. Bollobás, Combinatorics][bollobas1986]
The point-wise supremum a ⊔ b
of a, b : α
.
Equations
Instances For
The point-wise infimum a ⊓ b
of a, b : α
.
Equations
Instances For
s ⊻ t
is the set of elements of the form a ⊔ b
where a ∈ s
, b ∈ t
.
Equations
Instances For
@[simp]
@[simp]
@[simp]
@[simp]
theorem
Set.image_sups
{F : Type u_1}
{α : Type u_2}
{β : Type u_3}
[SemilatticeSup α]
[SemilatticeSup β]
[FunLike F α β]
[SupHomClass F α β]
(f : F)
(s t : Set α)
:
@[simp]
@[simp]
s ⊼ t
is the set of elements of the form a ⊓ b
where a ∈ s
, b ∈ t
.
Equations
Instances For
@[simp]
@[simp]
@[simp]
@[simp]
theorem
Set.image_infs
{F : Type u_1}
{α : Type u_2}
{β : Type u_3}
[SemilatticeInf α]
[SemilatticeInf β]
[FunLike F α β]
[InfHomClass F α β]
(f : F)
(s t : Set α)
:
@[simp]
@[simp]
@[simp]
@[simp]