Documentation

Mathlib.Data.Sum.Lattice

Lexicographic sum of lattices #

This file proves that we can combine two lattices α and β into a lattice α ⊕ₗ β where everything in α is declared smaller than everything in β.

Equations
    @[simp]
    theorem Sum.Lex.inl_sup {α : Type u_1} {β : Type u_2} [SemilatticeSup α] [SemilatticeSup β] (a₁ a₂ : α) :
    inlₗ (a₁a₂) = inlₗ a₁inlₗ a₂
    @[simp]
    theorem Sum.Lex.inr_sup {α : Type u_1} {β : Type u_2} [SemilatticeSup α] [SemilatticeSup β] (b₁ b₂ : β) :
    inrₗ (b₁b₂) = inrₗ b₁inrₗ b₂
    Equations
      @[simp]
      theorem Sum.Lex.inl_inf {α : Type u_1} {β : Type u_2} [SemilatticeInf α] [SemilatticeInf β] (a₁ a₂ : α) :
      inlₗ (a₁a₂) = inlₗ a₁inlₗ a₂
      @[simp]
      theorem Sum.Lex.inr_inf {α : Type u_1} {β : Type u_2} [SemilatticeInf α] [SemilatticeInf β] (b₁ b₂ : β) :
      inrₗ (b₁b₂) = inrₗ b₁inrₗ b₂
      instance Sum.Lex.instLattice {α : Type u_1} {β : Type u_2} [Lattice α] [Lattice β] :
      Equations
        def Sum.Lex.inlLatticeHom {α : Type u_1} {β : Type u_2} [Lattice α] [Lattice β] :

        Sum.Lex.inlₗ as a lattice homomorphism.

        Equations
          Instances For
            def Sum.Lex.inrLatticeHom {α : Type u_1} {β : Type u_2} [Lattice α] [Lattice β] :

            Sum.Lex.inrₗ as a lattice homomorphism.

            Equations
              Instances For
                Equations