Documentation

Mathlib.Data.Sym.Sym2.Finsupp

Finitely supported functions from the symmetric square #

This file lifts functions α →₀ M₀ to functions Sym2 α →₀ M₀ by precomposing with multiplication.

theorem Finsupp.mem_sym2_support_of_mul_ne_zero {α : Type u_1} {M₀ : Type u_2} [CommMonoidWithZero M₀] {f : α →₀ M₀} (p : Sym2 α) (hp : (Sym2.map (⇑f) p).mul 0) :
noncomputable def Finsupp.sym2Mul {α : Type u_1} {M₀ : Type u_2} [CommMonoidWithZero M₀] (f : α →₀ M₀) :
Sym2 α →₀ M₀

The composition of a Finsupp with Sym2.mul as a Finsupp.

Equations
    Instances For
      theorem Finsupp.support_sym2Mul_subset {α : Type u_1} {M₀ : Type u_2} [CommMonoidWithZero M₀] {f : α →₀ M₀} :
      @[simp]
      theorem Finsupp.coe_sym2Mul {α : Type u_1} {M₀ : Type u_2} [CommMonoidWithZero M₀] (f : α →₀ M₀) :
      theorem Finsupp.sym2Mul_apply_mk {α : Type u_1} {M₀ : Type u_2} [CommMonoidWithZero M₀] {f : α →₀ M₀} (p : α × α) :
      f.sym2Mul (Sym2.mk p) = f p.1 * f p.2