Documentation

Mathlib.Data.ZMod.QuotientGroup

ZMod n and quotient groups / rings #

This file relates ZMod n to the quotient group ℤ / AddSubgroup.zmultiples (n : ℤ).

Main definitions #

Tags #

zmod, quotient group

modulo multiples of n : ℕ is ZMod n.

Equations
    Instances For

      modulo multiples of a : ℤ is ZMod a.natAbs.

      Equations
        Instances For
          noncomputable def AddAction.zmultiplesQuotientStabilizerEquiv {α : Type u_3} {β : Type u_4} [AddGroup α] (a : α) [AddAction α β] (b : β) :

          The quotient (ℤ ∙ a) ⧸ (stabilizer b) is cyclic of order minimalPeriod (a +ᵥ ·) b.

          Equations
            Instances For
              theorem AddAction.zmultiplesQuotientStabilizerEquiv_symm_apply {α : Type u_3} {β : Type u_4} [AddGroup α] (a : α) [AddAction α β] (b : β) (n : ZMod (Function.minimalPeriod (fun (x : β) => a +ᵥ x) b)) :
              noncomputable def MulAction.zpowersQuotientStabilizerEquiv {α : Type u_3} {β : Type u_4} [Group α] (a : α) [MulAction α β] (b : β) :

              The quotient (a ^ ℤ) ⧸ (stabilizer b) is cyclic of order minimalPeriod ((•) a) b.

              Equations
                Instances For
                  theorem MulAction.zpowersQuotientStabilizerEquiv_symm_apply {α : Type u_3} {β : Type u_4} [Group α] (a : α) [MulAction α β] (b : β) (n : ZMod (Function.minimalPeriod (fun (x : β) => a x) b)) :
                  noncomputable def MulAction.orbitZPowersEquiv {α : Type u_3} {β : Type u_4} [Group α] (a : α) [MulAction α β] (b : β) :
                  (orbit (↥(Subgroup.zpowers a)) b) ZMod (Function.minimalPeriod (fun (x : β) => a x) b)

                  The orbit (a ^ ℤ) • b is a cycle of order minimalPeriod ((•) a) b.

                  Equations
                    Instances For
                      noncomputable def AddAction.orbitZMultiplesEquiv {α : Type u_5} {β : Type u_6} [AddGroup α] (a : α) [AddAction α β] (b : β) :
                      (orbit (↥(AddSubgroup.zmultiples a)) b) ZMod (Function.minimalPeriod (fun (x : β) => a +ᵥ x) b)

                      The orbit (ℤ • a) +ᵥ b is a cycle of order minimalPeriod (a +ᵥ ·) b.

                      Equations
                        Instances For
                          theorem MulAction.orbitZPowersEquiv_symm_apply {α : Type u_3} {β : Type u_4} [Group α] (a : α) [MulAction α β] (b : β) (k : ZMod (Function.minimalPeriod (fun (x : β) => a x) b)) :
                          (orbitZPowersEquiv a b).symm k = a, ^ k.cast b,
                          theorem AddAction.orbitZMultiplesEquiv_symm_apply {α : Type u_3} {β : Type u_4} [AddGroup α] (a : α) [AddAction α β] (b : β) (k : ZMod (Function.minimalPeriod (fun (x : β) => a +ᵥ x) b)) :
                          theorem MulAction.orbitZPowersEquiv_symm_apply' {α : Type u_3} {β : Type u_4} [Group α] (a : α) [MulAction α β] (b : β) (k : ) :
                          (orbitZPowersEquiv a b).symm k = a, ^ k b,
                          theorem AddAction.orbitZMultiplesEquiv_symm_apply' {α : Type u_5} {β : Type u_6} [AddGroup α] (a : α) [AddAction α β] (b : β) (k : ) :
                          (orbitZMultiplesEquiv a b).symm k = k a, +ᵥ b,
                          theorem MulAction.minimalPeriod_eq_card {α : Type u_3} {β : Type u_4} [Group α] (a : α) [MulAction α β] (b : β) [Fintype (orbit (↥(Subgroup.zpowers a)) b)] :
                          Function.minimalPeriod (fun (x : β) => a x) b = Fintype.card (orbit (↥(Subgroup.zpowers a)) b)
                          theorem AddAction.minimalPeriod_eq_card {α : Type u_3} {β : Type u_4} [AddGroup α] (a : α) [AddAction α β] (b : β) [Fintype (orbit (↥(AddSubgroup.zmultiples a)) b)] :
                          Function.minimalPeriod (fun (x : β) => a +ᵥ x) b = Fintype.card (orbit (↥(AddSubgroup.zmultiples a)) b)
                          instance MulAction.minimalPeriod_pos {α : Type u_3} {β : Type u_4} [Group α] (a : α) [MulAction α β] (b : β) [Finite (orbit (↥(Subgroup.zpowers a)) b)] :
                          NeZero (Function.minimalPeriod (fun (x : β) => a x) b)
                          instance AddAction.minimalPeriod_pos {α : Type u_3} {β : Type u_4} [AddGroup α] (a : α) [AddAction α β] (b : β) [Finite (orbit (↥(AddSubgroup.zmultiples a)) b)] :
                          NeZero (Function.minimalPeriod (fun (x : β) => a +ᵥ x) b)
                          @[simp]
                          theorem Nat.card_zpowers {α : Type u_3} [Group α] (a : α) :

                          See also Fintype.card_zpowers.

                          @[simp]
                          theorem finite_zpowers {α : Type u_3} [Group α] {a : α} :
                          @[simp]
                          theorem finite_zmultiples {α : Type u_3} [AddGroup α] {a : α} :
                          @[simp]
                          theorem infinite_zpowers {α : Type u_3} [Group α] {a : α} :
                          @[simp]
                          theorem IsOfFinOrder.finite_zpowers {α : Type u_3} [Group α] {a : α} :

                          Alias of the reverse direction of finite_zpowers.

                          noncomputable def Subgroup.quotientEquivSigmaZMod {G : Type u_3} [Group G] (H : Subgroup G) (g : G) :
                          G H (q : MulAction.orbitRel.Quotient (↥(zpowers g)) (G H)) × ZMod (Function.minimalPeriod (fun (x : G H) => g x) (Quotient.out q))

                          Partition G ⧸ H into orbits of the action of g : G.

                          Equations
                            Instances For
                              theorem Subgroup.quotientEquivSigmaZMod_apply {G : Type u_3} [Group G] (H : Subgroup G) (g : G) (q : MulAction.orbitRel.Quotient (↥(zpowers g)) (G H)) (k : ) :