Documentation

Mathlib.Data.ZMod.QuotientRing

ZMod n and quotient groups / rings #

This file relates ZMod n to the quotient ring ℤ ⧸ Ideal.span {(n : ℤ)}.

Main definitions #

Tags #

zmod, quotient ring, ideal quotient

modulo the ideal generated by n : ℕ is ZMod n.

Equations
    Instances For

      modulo the ideal generated by a : ℤ is ZMod a.natAbs.

      Equations
        Instances For
          def ZMod.prodEquivPi {ι : Type u_3} [Fintype ι] (a : ι) (coprime : Pairwise (Function.onFun Nat.Coprime a)) :
          ZMod (∏ i : ι, a i) ≃+* ((i : ι) → ZMod (a i))

          The Chinese remainder theorem, elementary version for ZMod. See also Mathlib/Data/ZMod/Basic.lean for versions involving only two numbers.

          Equations
            Instances For