Documentation

Mathlib.FieldTheory.Finite.GaloisField

Galois fields #

If p is a prime number, and n a natural number, then GaloisField p n is defined as the splitting field of X^(p^n) - X over ZMod p. It is a finite field with p ^ n elements.

Main definition #

Main Results #

theorem galois_poly_separable {K : Type u_1} [CommRing K] (p q : ) [CharP K p] (h : p q) :
def GaloisField (p : ) [Fact (Nat.Prime p)] (n : ) :

A finite field with p ^ n elements. Every field with the same cardinality is (non-canonically) isomorphic to this field.

Equations
    Instances For
      instance instFieldGaloisField (p : ) [Fact (Nat.Prime p)] (n : ) :
      Equations
        instance GaloisField.instAlgebraZMod (p : ) [h_prime : Fact (Nat.Prime p)] (n : ) :
        Equations
          instance GaloisField.instCharP (p : ) [h_prime : Fact (Nat.Prime p)] (n : ) :
          instance GaloisField.instFinite (p : ) [h_prime : Fact (Nat.Prime p)] (n : ) :
          theorem GaloisField.finrank (p : ) [h_prime : Fact (Nat.Prime p)] {n : } (h : n 0) :
          theorem GaloisField.card (p : ) [h_prime : Fact (Nat.Prime p)] (n : ) (h : n 0) :

          A Galois field with exponent 1 is equivalent to ZMod

          Equations
            Instances For
              def GaloisField.algEquivGaloisFieldOfFintype (p : ) [h_prime : Fact (Nat.Prime p)] (n : ) {K : Type u_1} [Field K] [Fintype K] [Algebra (ZMod p) K] (h : Fintype.card K = p ^ n) :

              Any finite field is (possibly non canonically) isomorphic to some Galois field.

              Equations
                Instances For
                  @[instance 100]
                  instance GaloisField.instIsGaloisOfFinite {K : Type u_2} {K' : Type u_3} [Field K] [Field K'] [Finite K'] [Algebra K K'] :
                  def GaloisField.algEquivGaloisField (p : ) [h_prime : Fact (Nat.Prime p)] (n : ) {K : Type u_1} [Field K] [Algebra (ZMod p) K] (h : Nat.card K = p ^ n) :

                  Any finite field is (possibly non canonically) isomorphic to some Galois field.

                  Equations
                    Instances For
                      theorem FiniteField.algebraMap_norm_eq_pow {K : Type u_1} {K' : Type u_2} [Field K] [Field K'] [Algebra K K'] [Finite K'] {x : K'} :
                      (algebraMap K K') ((Algebra.norm K) x) = x ^ ((Nat.card K' - 1) / (Nat.card K - 1))
                      theorem FiniteField.norm_surjective (K : Type u_1) (K' : Type u_2) [Field K] [Field K'] [Algebra K K'] [Finite K'] :
                      def FiniteField.algEquivOfCardEq {K : Type u_1} {K' : Type u_2} [Field K] [Field K'] [Fintype K] [Fintype K'] (p : ) [h_prime : Fact (Nat.Prime p)] [Algebra (ZMod p) K] [Algebra (ZMod p) K'] (hKK' : Fintype.card K = Fintype.card K') :

                      Uniqueness of finite fields: Any two finite fields of the same cardinality are (possibly non canonically) isomorphic

                      Equations
                        Instances For
                          def FiniteField.ringEquivOfCardEq {K : Type u_1} {K' : Type u_2} [Field K] [Field K'] [Fintype K] [Fintype K'] (hKK' : Fintype.card K = Fintype.card K') :
                          K ≃+* K'

                          Uniqueness of finite fields: Any two finite fields of the same cardinality are (possibly non canonically) isomorphic

                          Equations
                            Instances For