Documentation

Mathlib.Geometry.Manifold.Algebra.SmoothFunctions

Algebraic structures over C^n functions #

In this file, we define instances of algebraic structures over C^n functions.

instance ContMDiffMap.instMul {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [Mul G] [TopologicalSpace G] [ChartedSpace H' G] [ContMDiffMul I' n G] :
Mul (ContMDiffMap I I' N G n)
Equations
    instance ContMDiffMap.instAdd {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [Add G] [TopologicalSpace G] [ChartedSpace H' G] [ContMDiffAdd I' n G] :
    Add (ContMDiffMap I I' N G n)
    Equations
      @[simp]
      theorem ContMDiffMap.coe_mul {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [Mul G] [TopologicalSpace G] [ChartedSpace H' G] [ContMDiffMul I' n G] (f g : ContMDiffMap I I' N G n) :
      ⇑(f * g) = f * g
      @[simp]
      theorem ContMDiffMap.coe_add {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [Add G] [TopologicalSpace G] [ChartedSpace H' G] [ContMDiffAdd I' n G] (f g : ContMDiffMap I I' N G n) :
      ⇑(f + g) = f + g
      @[simp]
      theorem ContMDiffMap.mul_comp {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {E'' : Type u_7} [NormedAddCommGroup E''] [NormedSpace 𝕜 E''] {H'' : Type u_8} [TopologicalSpace H''] {I'' : ModelWithCorners 𝕜 E'' H''} {N' : Type u_9} [TopologicalSpace N'] [ChartedSpace H'' N'] {n : WithTop ℕ∞} {G : Type u_10} [Mul G] [TopologicalSpace G] [ChartedSpace H' G] [ContMDiffMul I' n G] (f g : ContMDiffMap I'' I' N' G n) (h : ContMDiffMap I I'' N N' n) :
      (f * g).comp h = f.comp h * g.comp h
      @[simp]
      theorem ContMDiffMap.add_comp {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {E'' : Type u_7} [NormedAddCommGroup E''] [NormedSpace 𝕜 E''] {H'' : Type u_8} [TopologicalSpace H''] {I'' : ModelWithCorners 𝕜 E'' H''} {N' : Type u_9} [TopologicalSpace N'] [ChartedSpace H'' N'] {n : WithTop ℕ∞} {G : Type u_10} [Add G] [TopologicalSpace G] [ChartedSpace H' G] [ContMDiffAdd I' n G] (f g : ContMDiffMap I'' I' N' G n) (h : ContMDiffMap I I'' N N' n) :
      (f + g).comp h = f.comp h + g.comp h
      instance ContMDiffMap.instOne {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [One G] [TopologicalSpace G] [ChartedSpace H' G] :
      One (ContMDiffMap I I' N G n)
      Equations
        instance ContMDiffMap.instZero {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [Zero G] [TopologicalSpace G] [ChartedSpace H' G] :
        Zero (ContMDiffMap I I' N G n)
        Equations
          @[simp]
          theorem ContMDiffMap.coe_one {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [One G] [TopologicalSpace G] [ChartedSpace H' G] :
          1 = 1
          @[simp]
          theorem ContMDiffMap.coe_zero {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [Zero G] [TopologicalSpace G] [ChartedSpace H' G] :
          0 = 0
          instance ContMDiffMap.instNSMul {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [AddMonoid G] [TopologicalSpace G] [ChartedSpace H' G] [ContMDiffAdd I' n G] :
          SMul (ContMDiffMap I I' N G n)
          Equations
            instance ContMDiffMap.instPow {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [Monoid G] [TopologicalSpace G] [ChartedSpace H' G] [ContMDiffMul I' n G] :
            Pow (ContMDiffMap I I' N G n)
            Equations
              @[simp]
              theorem ContMDiffMap.coe_pow {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [Monoid G] [TopologicalSpace G] [ChartedSpace H' G] [ContMDiffMul I' n G] (f : ContMDiffMap I I' N G n) (n✝ : ) :
              ⇑(f ^ n✝) = f ^ n✝
              @[simp]
              theorem ContMDiffMap.coe_nsmul {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [AddMonoid G] [TopologicalSpace G] [ChartedSpace H' G] [ContMDiffAdd I' n G] (f : ContMDiffMap I I' N G n) (n✝ : ) :
              ⇑(n✝ f) = n✝ f

              Group structure #

              In this section we show that C^n functions valued in a Lie group inherit a group structure under pointwise multiplication.

              instance ContMDiffMap.semigroup {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [Semigroup G] [TopologicalSpace G] [ChartedSpace H' G] [ContMDiffMul I' n G] :
              Semigroup (ContMDiffMap I I' N G n)
              Equations
                instance ContMDiffMap.addSemigroup {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [AddSemigroup G] [TopologicalSpace G] [ChartedSpace H' G] [ContMDiffAdd I' n G] :
                Equations
                  instance ContMDiffMap.monoid {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [Monoid G] [TopologicalSpace G] [ChartedSpace H' G] [ContMDiffMul I' n G] :
                  Monoid (ContMDiffMap I I' N G n)
                  Equations
                    instance ContMDiffMap.addMonoid {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [AddMonoid G] [TopologicalSpace G] [ChartedSpace H' G] [ContMDiffAdd I' n G] :
                    AddMonoid (ContMDiffMap I I' N G n)
                    Equations
                      def ContMDiffMap.coeFnMonoidHom {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [Monoid G] [TopologicalSpace G] [ChartedSpace H' G] [ContMDiffMul I' n G] :
                      ContMDiffMap I I' N G n →* NG

                      Coercion to a function as a MonoidHom. Similar to MonoidHom.coeFn.

                      Equations
                        Instances For
                          def ContMDiffMap.coeFnAddMonoidHom {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [AddMonoid G] [TopologicalSpace G] [ChartedSpace H' G] [ContMDiffAdd I' n G] :
                          ContMDiffMap I I' N G n →+ NG

                          Coercion to a function as an AddMonoidHom. Similar to AddMonoidHom.coeFn.

                          Equations
                            Instances For
                              @[simp]
                              theorem ContMDiffMap.coeFnMonoidHom_apply {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [Monoid G] [TopologicalSpace G] [ChartedSpace H' G] [ContMDiffMul I' n G] (a✝ : ContMDiffMap I I' N G n) (a : N) :
                              coeFnMonoidHom a✝ a = a✝ a
                              @[simp]
                              theorem ContMDiffMap.coeFnAddMonoidHom_apply {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [AddMonoid G] [TopologicalSpace G] [ChartedSpace H' G] [ContMDiffAdd I' n G] (a✝ : ContMDiffMap I I' N G n) (a : N) :
                              coeFnAddMonoidHom a✝ a = a✝ a
                              def ContMDiffMap.compLeftMonoidHom {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} (N : Type u_6) [TopologicalSpace N] [ChartedSpace H N] {E'' : Type u_7} [NormedAddCommGroup E''] [NormedSpace 𝕜 E''] {H'' : Type u_8} [TopologicalSpace H''] {I'' : ModelWithCorners 𝕜 E'' H''} {n : WithTop ℕ∞} {G' : Type u_10} [Monoid G'] [TopologicalSpace G'] [ChartedSpace H' G'] [ContMDiffMul I' n G'] {G'' : Type u_11} [Monoid G''] [TopologicalSpace G''] [ChartedSpace H'' G''] [ContMDiffMul I'' n G''] (φ : G' →* G'') ( : ContMDiff I' I'' n φ) :
                              ContMDiffMap I I' N G' n →* ContMDiffMap I I'' N G'' n

                              For a manifold N and a C^n homomorphism φ between Lie groups G', G'', the 'left-composition-by-φ' group homomorphism from C^n⟮I, N; I', G'⟯ to C^n⟮I, N; I'', G''⟯.

                              Equations
                                Instances For
                                  def ContMDiffMap.compLeftAddMonoidHom {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} (N : Type u_6) [TopologicalSpace N] [ChartedSpace H N] {E'' : Type u_7} [NormedAddCommGroup E''] [NormedSpace 𝕜 E''] {H'' : Type u_8} [TopologicalSpace H''] {I'' : ModelWithCorners 𝕜 E'' H''} {n : WithTop ℕ∞} {G' : Type u_10} [AddMonoid G'] [TopologicalSpace G'] [ChartedSpace H' G'] [ContMDiffAdd I' n G'] {G'' : Type u_11} [AddMonoid G''] [TopologicalSpace G''] [ChartedSpace H'' G''] [ContMDiffAdd I'' n G''] (φ : G' →+ G'') ( : ContMDiff I' I'' n φ) :
                                  ContMDiffMap I I' N G' n →+ ContMDiffMap I I'' N G'' n

                                  For a manifold N and a C^n homomorphism φ between additive Lie groups G', G'', the 'left-composition-by-φ' group homomorphism from C^n⟮I, N; I', G'⟯ to C^n⟮I, N; I'', G''⟯.

                                  Equations
                                    Instances For
                                      def ContMDiffMap.restrictMonoidHom {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {H' : Type u_5} [TopologicalSpace H'] (I' : ModelWithCorners 𝕜 E' H') {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} (G : Type u_10) [Monoid G] [TopologicalSpace G] [ChartedSpace H' G] [ContMDiffMul I' n G] {U V : TopologicalSpace.Opens N} (h : U V) :
                                      ContMDiffMap I I' (↥V) G n →* ContMDiffMap I I' (↥U) G n

                                      For a Lie group G and open sets U ⊆ V in N, the 'restriction' group homomorphism from C^n⟮I, V; I', G⟯ to C^n⟮I, U; I', G⟯.

                                      Equations
                                        Instances For
                                          def ContMDiffMap.restrictAddMonoidHom {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {H' : Type u_5} [TopologicalSpace H'] (I' : ModelWithCorners 𝕜 E' H') {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} (G : Type u_10) [AddMonoid G] [TopologicalSpace G] [ChartedSpace H' G] [ContMDiffAdd I' n G] {U V : TopologicalSpace.Opens N} (h : U V) :
                                          ContMDiffMap I I' (↥V) G n →+ ContMDiffMap I I' (↥U) G n

                                          For an additive Lie group G and open sets U ⊆ V in N, the 'restriction' group homomorphism from C^n⟮I, V; I', G⟯ to C^n⟮I, U; I', G⟯.

                                          Equations
                                            Instances For
                                              instance ContMDiffMap.commMonoid {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [CommMonoid G] [TopologicalSpace G] [ChartedSpace H' G] [ContMDiffMul I' n G] :
                                              Equations
                                                instance ContMDiffMap.addCommMonoid {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [AddCommMonoid G] [TopologicalSpace G] [ChartedSpace H' G] [ContMDiffAdd I' n G] :
                                                Equations
                                                  instance ContMDiffMap.group {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [Group G] [TopologicalSpace G] [ChartedSpace H' G] [LieGroup I' n G] :
                                                  Group (ContMDiffMap I I' N G n)
                                                  Equations
                                                    instance ContMDiffMap.addGroup {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [AddGroup G] [TopologicalSpace G] [ChartedSpace H' G] [LieAddGroup I' n G] :
                                                    AddGroup (ContMDiffMap I I' N G n)
                                                    Equations
                                                      @[simp]
                                                      theorem ContMDiffMap.coe_inv {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [Group G] [TopologicalSpace G] [ChartedSpace H' G] [LieGroup I' n G] (f : ContMDiffMap I I' N G n) :
                                                      f⁻¹ = (⇑f)⁻¹
                                                      @[simp]
                                                      theorem ContMDiffMap.coe_neg {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [AddGroup G] [TopologicalSpace G] [ChartedSpace H' G] [LieAddGroup I' n G] (f : ContMDiffMap I I' N G n) :
                                                      ⇑(-f) = -f
                                                      @[simp]
                                                      theorem ContMDiffMap.coe_div {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [Group G] [TopologicalSpace G] [ChartedSpace H' G] [LieGroup I' n G] (f g : ContMDiffMap I I' N G n) :
                                                      ⇑(f / g) = f / g
                                                      @[simp]
                                                      theorem ContMDiffMap.coe_sub {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [AddGroup G] [TopologicalSpace G] [ChartedSpace H' G] [LieAddGroup I' n G] (f g : ContMDiffMap I I' N G n) :
                                                      ⇑(f - g) = f - g
                                                      instance ContMDiffMap.commGroup {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [CommGroup G] [TopologicalSpace G] [ChartedSpace H' G] [LieGroup I' n G] :
                                                      CommGroup (ContMDiffMap I I' N G n)
                                                      Equations
                                                        instance ContMDiffMap.addCommGroup {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [AddCommGroup G] [TopologicalSpace G] [ChartedSpace H' G] [LieAddGroup I' n G] :
                                                        Equations

                                                          Ring structure #

                                                          In this section we show that C^n functions valued in a C^n ring R inherit a ring structure under pointwise multiplication.

                                                          instance ContMDiffMap.semiring {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {R : Type u_10} [Semiring R] [TopologicalSpace R] [ChartedSpace H' R] [ContMDiffRing I' n R] :
                                                          Semiring (ContMDiffMap I I' N R n)
                                                          Equations
                                                            instance ContMDiffMap.ring {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {R : Type u_10} [Ring R] [TopologicalSpace R] [ChartedSpace H' R] [ContMDiffRing I' n R] :
                                                            Ring (ContMDiffMap I I' N R n)
                                                            Equations
                                                              instance ContMDiffMap.commRing {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {R : Type u_10} [CommRing R] [TopologicalSpace R] [ChartedSpace H' R] [ContMDiffRing I' n R] :
                                                              CommRing (ContMDiffMap I I' N R n)
                                                              Equations
                                                                def ContMDiffMap.compLeftRingHom {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} (N : Type u_6) [TopologicalSpace N] [ChartedSpace H N] {E'' : Type u_7} [NormedAddCommGroup E''] [NormedSpace 𝕜 E''] {H'' : Type u_8} [TopologicalSpace H''] {I'' : ModelWithCorners 𝕜 E'' H''} {n : WithTop ℕ∞} {R' : Type u_10} [Ring R'] [TopologicalSpace R'] [ChartedSpace H' R'] [ContMDiffRing I' n R'] {R'' : Type u_11} [Ring R''] [TopologicalSpace R''] [ChartedSpace H'' R''] [ContMDiffRing I'' n R''] (φ : R' →+* R'') ( : ContMDiff I' I'' n φ) :
                                                                ContMDiffMap I I' N R' n →+* ContMDiffMap I I'' N R'' n

                                                                For a manifold N and a C^n homomorphism φ between C^n rings R', R'', the 'left-composition-by-φ' ring homomorphism from C^n⟮I, N; I', R'⟯ to C^n⟮I, N; I'', R''⟯.

                                                                Equations
                                                                  Instances For
                                                                    def ContMDiffMap.restrictRingHom {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {H' : Type u_5} [TopologicalSpace H'] (I' : ModelWithCorners 𝕜 E' H') {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} (R : Type u_10) [Ring R] [TopologicalSpace R] [ChartedSpace H' R] [ContMDiffRing I' n R] {U V : TopologicalSpace.Opens N} (h : U V) :
                                                                    ContMDiffMap I I' (↥V) R n →+* ContMDiffMap I I' (↥U) R n

                                                                    For a "C^n ring" R and open sets U ⊆ V in N, the "restriction" ring homomorphism from C^n⟮I, V; I', R⟯ to C^n⟮I, U; I', R⟯.

                                                                    Equations
                                                                      Instances For
                                                                        def ContMDiffMap.coeFnRingHom {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {R : Type u_10} [CommRing R] [TopologicalSpace R] [ChartedSpace H' R] [ContMDiffRing I' n R] :
                                                                        ContMDiffMap I I' N R n →+* NR

                                                                        Coercion to a function as a RingHom.

                                                                        Equations
                                                                          Instances For
                                                                            @[simp]
                                                                            theorem ContMDiffMap.coeFnRingHom_apply {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {R : Type u_10} [CommRing R] [TopologicalSpace R] [ChartedSpace H' R] [ContMDiffRing I' n R] (a✝ : ContMDiffMap I I' N R n) (a : N) :
                                                                            coeFnRingHom a✝ a = a✝ a
                                                                            def ContMDiffMap.evalRingHom {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {R : Type u_10} [CommRing R] [TopologicalSpace R] [ChartedSpace H' R] [ContMDiffRing I' n R] (m : N) :
                                                                            ContMDiffMap I I' N R n →+* R

                                                                            Function.eval as a RingHom on the ring of C^n functions.

                                                                            Equations
                                                                              Instances For

                                                                                Semimodule structure #

                                                                                In this section we show that C^n functions valued in a vector space M over a normed field 𝕜 inherit a vector space structure.

                                                                                instance ContMDiffMap.instSMul {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {V : Type u_10} [NormedAddCommGroup V] [NormedSpace 𝕜 V] :
                                                                                SMul 𝕜 (ContMDiffMap I (modelWithCornersSelf 𝕜 V) N V n)
                                                                                Equations
                                                                                  @[simp]
                                                                                  theorem ContMDiffMap.coe_smul {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {V : Type u_10} [NormedAddCommGroup V] [NormedSpace 𝕜 V] (r : 𝕜) (f : ContMDiffMap I (modelWithCornersSelf 𝕜 V) N V n) :
                                                                                  ⇑(r f) = r f
                                                                                  @[simp]
                                                                                  theorem ContMDiffMap.smul_comp {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {E'' : Type u_7} [NormedAddCommGroup E''] [NormedSpace 𝕜 E''] {H'' : Type u_8} [TopologicalSpace H''] {I'' : ModelWithCorners 𝕜 E'' H''} {N' : Type u_9} [TopologicalSpace N'] [ChartedSpace H'' N'] {n : WithTop ℕ∞} {V : Type u_10} [NormedAddCommGroup V] [NormedSpace 𝕜 V] (r : 𝕜) (g : ContMDiffMap I'' (modelWithCornersSelf 𝕜 V) N' V n) (h : ContMDiffMap I I'' N N' n) :
                                                                                  (r g).comp h = r g.comp h
                                                                                  instance ContMDiffMap.module {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {V : Type u_10} [NormedAddCommGroup V] [NormedSpace 𝕜 V] :
                                                                                  Module 𝕜 (ContMDiffMap I (modelWithCornersSelf 𝕜 V) N V n)
                                                                                  Equations
                                                                                    def ContMDiffMap.coeFnLinearMap {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {V : Type u_10} [NormedAddCommGroup V] [NormedSpace 𝕜 V] :
                                                                                    ContMDiffMap I (modelWithCornersSelf 𝕜 V) N V n →ₗ[𝕜] NV

                                                                                    Coercion to a function as a LinearMap.

                                                                                    Equations
                                                                                      Instances For
                                                                                        @[simp]
                                                                                        theorem ContMDiffMap.coeFnLinearMap_apply {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {V : Type u_10} [NormedAddCommGroup V] [NormedSpace 𝕜 V] (a✝ : ContMDiffMap I (modelWithCornersSelf 𝕜 V) N V n) (a : N) :
                                                                                        coeFnLinearMap a✝ a = a✝ a

                                                                                        Algebra structure #

                                                                                        In this section we show that C^n functions valued in a normed algebra A over a normed field 𝕜 inherit an algebra structure.

                                                                                        def ContMDiffMap.C {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {A : Type u_10} [NormedRing A] [NormedAlgebra 𝕜 A] [ContMDiffRing (modelWithCornersSelf 𝕜 A) n A] :

                                                                                        C^n constant functions as a RingHom.

                                                                                        Equations
                                                                                          Instances For
                                                                                            instance ContMDiffMap.algebra {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {A : Type u_10} [NormedRing A] [NormedAlgebra 𝕜 A] [ContMDiffRing (modelWithCornersSelf 𝕜 A) n A] :
                                                                                            Algebra 𝕜 (ContMDiffMap I (modelWithCornersSelf 𝕜 A) N A n)
                                                                                            Equations
                                                                                              def ContMDiffMap.coeFnAlgHom {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {A : Type u_10} [NormedRing A] [NormedAlgebra 𝕜 A] [ContMDiffRing (modelWithCornersSelf 𝕜 A) n A] :
                                                                                              ContMDiffMap I (modelWithCornersSelf 𝕜 A) N A n →ₐ[𝕜] NA

                                                                                              Coercion to a function as an AlgHom.

                                                                                              Equations
                                                                                                Instances For
                                                                                                  @[simp]
                                                                                                  theorem ContMDiffMap.coeFnAlgHom_apply {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {A : Type u_10} [NormedRing A] [NormedAlgebra 𝕜 A] [ContMDiffRing (modelWithCornersSelf 𝕜 A) n A] (a✝ : ContMDiffMap I (modelWithCornersSelf 𝕜 A) N A n) (a : N) :
                                                                                                  coeFnAlgHom a✝ a = a✝ a

                                                                                                  Structure as module over scalar functions #

                                                                                                  If V is a module over 𝕜, then we show that the space of C^n functions from N to V is naturally a vector space over the ring of C^n functions from N to 𝕜.

                                                                                                  instance ContMDiffMap.instSMul' {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {V : Type u_10} [NormedAddCommGroup V] [NormedSpace 𝕜 V] :
                                                                                                  SMul (ContMDiffMap I (modelWithCornersSelf 𝕜 𝕜) N 𝕜 n) (ContMDiffMap I (modelWithCornersSelf 𝕜 V) N V n)

                                                                                                  C^n scalar-valued functions act by left-multiplication on C^n functions.

                                                                                                  Equations
                                                                                                    @[simp]
                                                                                                    theorem ContMDiffMap.smul_comp' {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {E'' : Type u_7} [NormedAddCommGroup E''] [NormedSpace 𝕜 E''] {H'' : Type u_8} [TopologicalSpace H''] {I'' : ModelWithCorners 𝕜 E'' H''} {N' : Type u_9} [TopologicalSpace N'] [ChartedSpace H'' N'] {n : WithTop ℕ∞} {V : Type u_10} [NormedAddCommGroup V] [NormedSpace 𝕜 V] (f : ContMDiffMap I'' (modelWithCornersSelf 𝕜 𝕜) N' 𝕜 n) (g : ContMDiffMap I'' (modelWithCornersSelf 𝕜 V) N' V n) (h : ContMDiffMap I I'' N N' n) :
                                                                                                    (f g).comp h = f.comp h g.comp h

                                                                                                    The left multiplication with a C^n scalar function commutes with composition.

                                                                                                    instance ContMDiffMap.module' {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {V : Type u_10} [NormedAddCommGroup V] [NormedSpace 𝕜 V] :
                                                                                                    Module (ContMDiffMap I (modelWithCornersSelf 𝕜 𝕜) N 𝕜 n) (ContMDiffMap I (modelWithCornersSelf 𝕜 V) N V n)

                                                                                                    The space of C^n functions with values in a space V is a module over the space of C^n functions with values in 𝕜.

                                                                                                    Equations