Documentation

Mathlib.Geometry.Manifold.IntegralCurve.Basic

Integral curves of vector fields on a manifold #

Let M be a manifold and v : (x : M) → TangentSpace I x be a vector field on M. An integral curve of v is a function γ : ℝ → M such that the derivative of γ at t equals v (γ t). The integral curve may only be defined for all t within some subset of .

This is the first of a series of files, organised as follows:

Main definitions #

Let v : M → TM be a vector field on M, and let γ : ℝ → M.

For IsMIntegralCurveOn γ v s and IsMIntegralCurveAt γ v t₀, even though γ is defined for all time, its value outside of the set s or a small interval around t₀ is irrelevant and considered junk.

TODO #

Reference #

Tags #

integral curve, vector field

def IsMIntegralCurveOn {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] (γ : M) (v : (x : M) → TangentSpace I x) (s : Set ) :

If γ : ℝ → M is $C^1$ on s : Set and v is a vector field on M, IsMIntegralCurveOn γ v s means γ t is tangent to v (γ t) for all t ∈ s. The value of γ outside of s is irrelevant and considered junk.

Equations
    Instances For
      @[deprecated IsMIntegralCurveOn (since := "2025-08-12")]
      def IsIntegralCurveOn {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] (γ : M) (v : (x : M) → TangentSpace I x) (s : Set ) :

      Alias of IsMIntegralCurveOn.


      If γ : ℝ → M is $C^1$ on s : Set and v is a vector field on M, IsMIntegralCurveOn γ v s means γ t is tangent to v (γ t) for all t ∈ s. The value of γ outside of s is irrelevant and considered junk.

      Equations
        Instances For
          def IsMIntegralCurveAt {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] (γ : M) (v : (x : M) → TangentSpace I x) (t₀ : ) :

          If v is a vector field on M and t₀ : ℝ, IsMIntegralCurveAt γ v t₀ means γ : ℝ → M is a local integral curve of v in a neighbourhood containing t₀. The value of γ outside of this interval is irrelevant and considered junk.

          Equations
            Instances For
              @[deprecated IsMIntegralCurveAt (since := "2025-08-12")]
              def IsIntegralCurveAt {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] (γ : M) (v : (x : M) → TangentSpace I x) (t₀ : ) :

              Alias of IsMIntegralCurveAt.


              If v is a vector field on M and t₀ : ℝ, IsMIntegralCurveAt γ v t₀ means γ : ℝ → M is a local integral curve of v in a neighbourhood containing t₀. The value of γ outside of this interval is irrelevant and considered junk.

              Equations
                Instances For
                  def IsMIntegralCurve {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] (γ : M) (v : (x : M) → TangentSpace I x) :

                  If v : M → TM is a vector field on M, IsMIntegralCurve γ v means γ : ℝ → M is a global integral curve of v. That is, γ t is tangent to v (γ t) for all t : ℝ.

                  Equations
                    Instances For
                      @[deprecated IsMIntegralCurve (since := "2025-08-12")]
                      def IsIntegralCurve {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] (γ : M) (v : (x : M) → TangentSpace I x) :

                      Alias of IsMIntegralCurve.


                      If v : M → TM is a vector field on M, IsMIntegralCurve γ v means γ : ℝ → M is a global integral curve of v. That is, γ t is tangent to v (γ t) for all t : ℝ.

                      Equations
                        Instances For
                          theorem IsMIntegralCurve.isMIntegralCurveOn {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} (h : IsMIntegralCurve γ v) (s : Set ) :
                          @[deprecated IsMIntegralCurve.isMIntegralCurveOn (since := "2025-08-12")]
                          theorem IsIntegralCurve.isIntegralCurveOn {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} (h : IsMIntegralCurve γ v) (s : Set ) :

                          Alias of IsMIntegralCurve.isMIntegralCurveOn.

                          @[deprecated isMIntegralCurve_iff_isMIntegralCurveOn (since := "2025-08-12")]

                          Alias of isMIntegralCurve_iff_isMIntegralCurveOn.

                          theorem isMIntegralCurveAt_iff {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {t₀ : } :
                          IsMIntegralCurveAt γ v t₀ snhds t₀, IsMIntegralCurveOn γ v s
                          @[deprecated isMIntegralCurveAt_iff (since := "2025-08-12")]
                          theorem isIntegralCurveAt_iff {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {t₀ : } :
                          IsMIntegralCurveAt γ v t₀ snhds t₀, IsMIntegralCurveOn γ v s

                          Alias of isMIntegralCurveAt_iff.

                          theorem isMIntegralCurveAt_iff' {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {t₀ : } :
                          IsMIntegralCurveAt γ v t₀ ε > 0, IsMIntegralCurveOn γ v (Metric.ball t₀ ε)

                          γ is an integral curve for v at t₀ iff γ is an integral curve on some interval containing t₀.

                          @[deprecated isMIntegralCurveAt_iff' (since := "2025-08-12")]
                          theorem isIntegralCurveAt_iff' {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {t₀ : } :
                          IsMIntegralCurveAt γ v t₀ ε > 0, IsMIntegralCurveOn γ v (Metric.ball t₀ ε)

                          Alias of isMIntegralCurveAt_iff'.


                          γ is an integral curve for v at t₀ iff γ is an integral curve on some interval containing t₀.

                          theorem IsMIntegralCurve.isMIntegralCurveAt {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} (h : IsMIntegralCurve γ v) (t : ) :
                          @[deprecated IsMIntegralCurve.isMIntegralCurveAt (since := "2025-08-12")]
                          theorem IsIntegralCurve.isIntegralCurveAt {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} (h : IsMIntegralCurve γ v) (t : ) :

                          Alias of IsMIntegralCurve.isMIntegralCurveAt.

                          theorem isMIntegralCurve_iff_isMIntegralCurveAt {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} :
                          @[deprecated isMIntegralCurve_iff_isMIntegralCurveAt (since := "2025-08-12")]
                          theorem isIntegralCurve_iff_isIntegralCurveAt {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} :

                          Alias of isMIntegralCurve_iff_isMIntegralCurveAt.

                          theorem IsMIntegralCurveOn.mono {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {s s' : Set } (h : IsMIntegralCurveOn γ v s) (hs : s' s) :
                          @[deprecated IsMIntegralCurveOn.mono (since := "2025-08-12")]
                          theorem IsIntegralCurveOn.mono {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {s s' : Set } (h : IsMIntegralCurveOn γ v s) (hs : s' s) :

                          Alias of IsMIntegralCurveOn.mono.

                          theorem IsMIntegralCurveAt.hasMFDerivAt {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {t₀ : } (h : IsMIntegralCurveAt γ v t₀) :
                          @[deprecated IsMIntegralCurveAt.hasMFDerivAt (since := "2025-08-12")]
                          theorem IsIntegralCurveAt.hasMFDerivAt {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {t₀ : } (h : IsMIntegralCurveAt γ v t₀) :

                          Alias of IsMIntegralCurveAt.hasMFDerivAt.

                          theorem IsMIntegralCurveOn.isMIntegralCurveAt {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {s : Set } {t₀ : } (h : IsMIntegralCurveOn γ v s) (hs : s nhds t₀) :
                          @[deprecated IsMIntegralCurveOn.isMIntegralCurveAt (since := "2025-08-12")]
                          theorem IsIntegralCurveOn.isIntegralCurveAt {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {s : Set } {t₀ : } (h : IsMIntegralCurveOn γ v s) (hs : s nhds t₀) :

                          Alias of IsMIntegralCurveOn.isMIntegralCurveAt.

                          theorem IsMIntegralCurveAt.isMIntegralCurveOn {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {s : Set } (h : ts, IsMIntegralCurveAt γ v t) :

                          If γ is an integral curve at each t ∈ s, it is an integral curve on s.

                          @[deprecated IsMIntegralCurveAt.isMIntegralCurveOn (since := "2025-08-12")]
                          theorem IsIntegralCurveAt.isIntegralCurveOn {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {s : Set } (h : ts, IsMIntegralCurveAt γ v t) :

                          Alias of IsMIntegralCurveAt.isMIntegralCurveOn.


                          If γ is an integral curve at each t ∈ s, it is an integral curve on s.

                          theorem isMIntegralCurveOn_iff_isMIntegralCurveAt {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {s : Set } (hs : IsOpen s) :
                          IsMIntegralCurveOn γ v s ts, IsMIntegralCurveAt γ v t
                          @[deprecated isMIntegralCurveOn_iff_isMIntegralCurveAt (since := "2025-08-12")]
                          theorem isIntegralCurveOn_iff_isIntegralCurveAt {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {s : Set } (hs : IsOpen s) :
                          IsMIntegralCurveOn γ v s ts, IsMIntegralCurveAt γ v t

                          Alias of isMIntegralCurveOn_iff_isMIntegralCurveAt.

                          theorem IsMIntegralCurveOn.continuousWithinAt {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {s : Set } {t₀ : } ( : IsMIntegralCurveOn γ v s) (ht : t₀ s) :
                          @[deprecated IsMIntegralCurveOn.continuousWithinAt (since := "2025-08-12")]
                          theorem IsIntegralCurveOn.continuousAt {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {s : Set } {t₀ : } ( : IsMIntegralCurveOn γ v s) (ht : t₀ s) :

                          Alias of IsMIntegralCurveOn.continuousWithinAt.

                          @[deprecated IsMIntegralCurveOn.continuousWithinAt (since := "2025-08-12")]
                          theorem IsIntegralCurveOn.continuousWithinAt {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {s : Set } {t₀ : } ( : IsMIntegralCurveOn γ v s) (ht : t₀ s) :

                          Alias of IsMIntegralCurveOn.continuousWithinAt.

                          theorem IsMIntegralCurveOn.continuousOn {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {s : Set } ( : IsMIntegralCurveOn γ v s) :
                          @[deprecated IsMIntegralCurveOn.continuousOn (since := "2025-08-12")]
                          theorem IsIntegralCurveOn.continuousOn {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {s : Set } ( : IsMIntegralCurveOn γ v s) :

                          Alias of IsMIntegralCurveOn.continuousOn.

                          theorem IsMIntegralCurveAt.continuousAt {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {t₀ : } ( : IsMIntegralCurveAt γ v t₀) :
                          ContinuousAt γ t₀
                          @[deprecated IsMIntegralCurveAt.continuousAt (since := "2025-08-12")]
                          theorem IsIntegralCurveAt.continuousAt {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {t₀ : } ( : IsMIntegralCurveAt γ v t₀) :
                          ContinuousAt γ t₀

                          Alias of IsMIntegralCurveAt.continuousAt.

                          theorem IsMIntegralCurve.continuous {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} ( : IsMIntegralCurve γ v) :
                          @[deprecated IsMIntegralCurve.continuous (since := "2025-08-12")]
                          theorem IsIntegralCurve.continuous {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} ( : IsMIntegralCurve γ v) :

                          Alias of IsMIntegralCurve.continuous.

                          theorem IsMIntegralCurveOn.hasDerivWithinAt {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {s : Set } {t₀ : } [IsManifold I 1 M] ( : IsMIntegralCurveOn γ v s) {t : } (ht : t s) (hsrc : γ t (extChartAt I (γ t₀)).source) :
                          HasDerivWithinAt ((extChartAt I (γ t₀)) γ) ((tangentCoordChange I (γ t) (γ t₀) (γ t)) (v (γ t))) s t

                          If γ is an integral curve of a vector field v, then γ t is tangent to v (γ t) when expressed in the local chart around the initial point γ t₀.

                          @[deprecated IsMIntegralCurveOn.hasDerivWithinAt (since := "2025-08-12")]
                          theorem IsIntegralCurveOn.hasDerivWithinAt {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {s : Set } {t₀ : } [IsManifold I 1 M] ( : IsMIntegralCurveOn γ v s) {t : } (ht : t s) (hsrc : γ t (extChartAt I (γ t₀)).source) :
                          HasDerivWithinAt ((extChartAt I (γ t₀)) γ) ((tangentCoordChange I (γ t) (γ t₀) (γ t)) (v (γ t))) s t

                          Alias of IsMIntegralCurveOn.hasDerivWithinAt.


                          If γ is an integral curve of a vector field v, then γ t is tangent to v (γ t) when expressed in the local chart around the initial point γ t₀.

                          theorem IsMIntegralCurveAt.eventually_hasDerivAt {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {t₀ : } [IsManifold I 1 M] ( : IsMIntegralCurveAt γ v t₀) :
                          ∀ᶠ (t : ) in nhds t₀, HasDerivAt ((extChartAt I (γ t₀)) γ) ((tangentCoordChange I (γ t) (γ t₀) (γ t)) (v (γ t))) t
                          @[deprecated IsMIntegralCurveAt.eventually_hasDerivAt (since := "2025-08-12")]
                          theorem IsIntegralCurveAt.eventually_hasDerivAt {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {t₀ : } [IsManifold I 1 M] ( : IsMIntegralCurveAt γ v t₀) :
                          ∀ᶠ (t : ) in nhds t₀, HasDerivAt ((extChartAt I (γ t₀)) γ) ((tangentCoordChange I (γ t) (γ t₀) (γ t)) (v (γ t))) t

                          Alias of IsMIntegralCurveAt.eventually_hasDerivAt.