Documentation

Mathlib.GroupTheory.MonoidLocalization.Away

Localizing commutative monoids away from an element #

We treat the special case of localizing away from an element in the sections AwayMap and Away.

Tags #

localization, monoid localization, quotient monoid, congruence relation, characteristic predicate, commutative monoid, grothendieck group

@[reducible, inline]
abbrev Submonoid.LocalizationMap.AwayMap {M : Type u_1} [CommMonoid M] (x : M) (N' : Type u_4) [CommMonoid N'] :
Type (max u_1 u_4)

Given x : M, the type of CommMonoid homomorphisms f : M →* N such that N is isomorphic to the Localization of M at the Submonoid generated by x.

Equations
    Instances For
      @[reducible, inline]
      abbrev AddSubmonoid.LocalizationMap.AwayMap {M : Type u_1} [AddCommMonoid M] (x : M) (N' : Type u_4) [AddCommMonoid N'] :
      Type (max u_1 u_4)

      Given x : M, the type of AddCommMonoid homomorphisms f : M →+ N such that N is isomorphic to the localization of M at the AddSubmonoid generated by x.

      Equations
        Instances For
          noncomputable def Submonoid.LocalizationMap.AwayMap.invSelf {M : Type u_1} [CommMonoid M] {N : Type u_2} [CommMonoid N] (x : M) (F : AwayMap x N) :
          N

          Given x : M and a Localization map F : M →* N away from x, invSelf is (F x)⁻¹.

          Equations
            Instances For
              noncomputable def Submonoid.LocalizationMap.AwayMap.lift {M : Type u_1} [CommMonoid M] {N : Type u_2} [CommMonoid N] {P : Type u_3} [CommMonoid P] {g : M →* P} (x : M) (F : AwayMap x N) (hg : IsUnit (g x)) :
              N →* P

              Given x : M, a Localization map F : M →* N away from x, and a map of CommMonoids g : M →* P such that g x is invertible, the homomorphism induced from N to P sending z : N to g y * (g x)⁻ⁿ, where y : M, n : ℕ are such that z = F y * (F x)⁻ⁿ.

              Equations
                Instances For
                  @[simp]
                  theorem Submonoid.LocalizationMap.AwayMap.lift_eq {M : Type u_1} [CommMonoid M] {N : Type u_2} [CommMonoid N] {P : Type u_3} [CommMonoid P] {g : M →* P} (x : M) (F : AwayMap x N) (hg : IsUnit (g x)) (a : M) :
                  (lift x F hg) (F a) = g a
                  @[simp]
                  theorem Submonoid.LocalizationMap.AwayMap.lift_comp {M : Type u_1} [CommMonoid M] {N : Type u_2} [CommMonoid N] {P : Type u_3} [CommMonoid P] {g : M →* P} (x : M) (F : AwayMap x N) (hg : IsUnit (g x)) :
                  (lift x F hg).comp F = g
                  noncomputable def Submonoid.LocalizationMap.awayToAwayRight {M : Type u_1} [CommMonoid M] {N : Type u_2} [CommMonoid N] {P : Type u_3} [CommMonoid P] (x : M) (F : AwayMap x N) (y : M) (G : AwayMap (x * y) P) :
                  N →* P

                  Given x y : M and Localization maps F : M →* N, G : M →* P away from x and x * y respectively, the homomorphism induced from N to P.

                  Equations
                    Instances For
                      noncomputable def AddSubmonoid.LocalizationMap.AwayMap.negSelf {A : Type u_4} [AddCommMonoid A] (x : A) {B : Type u_5} [AddCommMonoid B] (F : AwayMap x B) :
                      B

                      Given x : A and a Localization map F : A →+ B away from x, neg_self is - (F x).

                      Equations
                        Instances For
                          noncomputable def AddSubmonoid.LocalizationMap.AwayMap.lift {A : Type u_4} [AddCommMonoid A] (x : A) {B : Type u_5} [AddCommMonoid B] (F : AwayMap x B) {C : Type u_6} [AddCommMonoid C] {g : A →+ C} (hg : IsAddUnit (g x)) :
                          B →+ C

                          Given x : A, a localization map F : A →+ B away from x, and a map of AddCommMonoids g : A →+ C such that g x is invertible, the homomorphism induced from B to C sending z : B to g y - n • g x, where y : A, n : ℕ are such that z = F y - n • F x.

                          Equations
                            Instances For
                              @[simp]
                              theorem AddSubmonoid.LocalizationMap.AwayMap.lift_eq {A : Type u_4} [AddCommMonoid A] (x : A) {B : Type u_5} [AddCommMonoid B] (F : AwayMap x B) {C : Type u_6} [AddCommMonoid C] {g : A →+ C} (hg : IsAddUnit (g x)) (a : A) :
                              (lift x F hg) (F a) = g a
                              @[simp]
                              theorem AddSubmonoid.LocalizationMap.AwayMap.lift_comp {A : Type u_4} [AddCommMonoid A] (x : A) {B : Type u_5} [AddCommMonoid B] (F : AwayMap x B) {C : Type u_6} [AddCommMonoid C] {g : A →+ C} (hg : IsAddUnit (g x)) :
                              (lift x F hg).comp F = g
                              noncomputable def AddSubmonoid.LocalizationMap.awayToAwayRight {A : Type u_4} [AddCommMonoid A] (x : A) {B : Type u_5} [AddCommMonoid B] (F : AwayMap x B) {C : Type u_6} [AddCommMonoid C] (y : A) (G : AwayMap (x + y) C) :
                              B →+ C

                              Given x y : A and Localization maps F : A →+ B, G : A →+ C away from x and x + y respectively, the homomorphism induced from B to C.

                              Equations
                                Instances For
                                  @[reducible, inline]
                                  abbrev Localization.Away {M : Type u_1} [CommMonoid M] (x : M) :
                                  Type u_1

                                  Given x : M, the Localization of M at the Submonoid generated by x, as a quotient.

                                  Equations
                                    Instances For
                                      @[reducible, inline]
                                      abbrev AddLocalization.Away {M : Type u_1} [AddCommMonoid M] (x : M) :
                                      Type u_1

                                      Given x : M, the Localization of M at the Submonoid generated by x, as a quotient.

                                      Equations
                                        Instances For
                                          def Localization.Away.invSelf {M : Type u_1} [CommMonoid M] (x : M) :

                                          Given x : M, invSelf is x⁻¹ in the Localization (as a quotient type) of M at the Submonoid generated by x.

                                          Equations
                                            Instances For

                                              Given x : M, negSelf is -x in the Localization (as a quotient type) of M at the Submonoid generated by x.

                                              Equations
                                                Instances For
                                                  @[reducible, inline]

                                                  Given x : M, the natural hom sending y : M, M a CommMonoid, to the equivalence class of (y, 1) in the Localization of M at the Submonoid generated by x.

                                                  Equations
                                                    Instances For
                                                      @[reducible, inline]

                                                      Given x : M, the natural hom sending y : M, M an AddCommMonoid, to the equivalence class of (y, 0) in the Localization of M at the Submonoid generated by x.

                                                      Equations
                                                        Instances For
                                                          noncomputable def Localization.Away.mulEquivOfQuotient {M : Type u_1} [CommMonoid M] {N : Type u_2} [CommMonoid N] (x : M) (f : Submonoid.LocalizationMap.AwayMap x N) :

                                                          Given x : M and a Localization map f : M →* N away from x, we get an isomorphism between the Localization of M at the Submonoid generated by x as a quotient type and N.

                                                          Equations
                                                            Instances For

                                                              Given x : M and a Localization map f : M →+ N away from x, we get an isomorphism between the Localization of M at the Submonoid generated by x as a quotient type and N.

                                                              Equations
                                                                Instances For