Documentation

Mathlib.GroupTheory.Perm.DomMulAct

Subgroup of Equiv.Perm α preserving a function #

Let α and ι by types and let f : α → ι

theorem DomMulAct.mem_stabilizer_iff {α : Type u_1} {ι : Type u_2} {f : αι} {g : (Equiv.Perm α)ᵈᵐᵃ} :
def DomMulAct.stabilizerEquiv_invFun {α : Type u_1} {ι : Type u_2} {f : αι} (g : (i : ι) → Equiv.Perm { a : α // f a = i }) (a : α) :
α

The invFun component of MulEquiv from MulAction.stabilizer (Perm α) f to the product of the `Equiv.Perm {a // f a = i}

Equations
    Instances For
      theorem DomMulAct.stabilizerEquiv_invFun_eq {α : Type u_1} {ι : Type u_2} {f : αι} (g : (i : ι) → Equiv.Perm { a : α // f a = i }) {a : α} {i : ι} (h : f a = i) :
      stabilizerEquiv_invFun g a = ((g i) a, h)
      theorem DomMulAct.comp_stabilizerEquiv_invFun {α : Type u_1} {ι : Type u_2} {f : αι} (g : (i : ι) → Equiv.Perm { a : α // f a = i }) (a : α) :
      def DomMulAct.stabilizerEquiv_invFun_aux {α : Type u_1} {ι : Type u_2} {f : αι} (g : (i : ι) → Equiv.Perm { a : α // f a = i }) :

      The invFun component of MulEquiv from MulAction.stabilizer (Perm α) p to the product of the Equiv.Perm {a | f a = i} (as an Equiv.Perm α`)

      Equations
        Instances For
          def DomMulAct.stabilizerMulEquiv {α : Type u_1} {ι : Type u_2} (f : αι) :
          (↥(MulAction.stabilizer (Equiv.Perm α)ᵈᵐᵃ f))ᵐᵒᵖ ≃* ((i : ι) → Equiv.Perm { a : α // f a = i })

          The MulEquiv from the MulOpposite of MulAction.stabilizer (Perm α)ᵈᵐᵃ f to the product of the Equiv.Perm {a // f a = i}

          Equations
            Instances For
              theorem DomMulAct.stabilizerMulEquiv_apply {α : Type u_1} {ι : Type u_2} {f : αι} (g : (↥(MulAction.stabilizer (Equiv.Perm α)ᵈᵐᵃ f))ᵐᵒᵖ) {a : α} {i : ι} (h : f a = i) :
              (((stabilizerMulEquiv f) g i) a, h) = (mk.symm (MulOpposite.unop g)) a
              theorem DomMulAct.stabilizer_card {α : Type u_1} {ι : Type u_2} (f : αι) [Fintype α] [DecidableEq α] [DecidableEq ι] [Fintype ι] :
              Fintype.card { g : Equiv.Perm α // f g = f } = i : ι, (Fintype.card { a : α // f a = i }).factorial

              The cardinality of the type of permutations preserving a function

              theorem DomMulAct.stabilizer_ncard {α : Type u_1} {ι : Type u_2} (f : αι) [Finite α] [Fintype ι] :
              {g : Equiv.Perm α | f g = f}.ncard = i : ι, {a : α | f a = i}.ncard.factorial

              The cardinality of the set of permutations preserving a function

              theorem DomMulAct.stabilizer_card' {α : Type u_1} {ι : Type u_2} (f : αι) [Fintype α] [DecidableEq α] [DecidableEq ι] :
              Fintype.card { g : Equiv.Perm α // f g = f } = iFinset.image f Finset.univ, (Fintype.card { a : α // f a = i }).factorial

              The cardinality of the type of permutations preserving a function (without the finiteness assumption on target)