Documentation

Mathlib.GroupTheory.Perm.ViaEmbedding

Equiv.Perm.viaEmbedding, a noncomputable analogue of Equiv.Perm.viaFintypeEmbedding. #

noncomputable def Equiv.Perm.viaEmbedding {α : Type u_1} {β : Type u_2} (e : Perm α) (ι : α β) :
Perm β

Noncomputable version of Equiv.Perm.viaFintypeEmbedding that does not assume Fintype

Equations
    Instances For
      theorem Equiv.Perm.viaEmbedding_apply {α : Type u_1} {β : Type u_2} (e : Perm α) (ι : α β) (x : α) :
      (e.viaEmbedding ι) (ι x) = ι (e x)
      theorem Equiv.Perm.viaEmbedding_apply_of_notMem {α : Type u_1} {β : Type u_2} (e : Perm α) (ι : α β) (x : β) (hx : xSet.range ι) :
      (e.viaEmbedding ι) x = x
      @[deprecated Equiv.Perm.viaEmbedding_apply_of_notMem (since := "2025-05-23")]
      theorem Equiv.Perm.viaEmbedding_apply_of_not_mem {α : Type u_1} {β : Type u_2} (e : Perm α) (ι : α β) (x : β) (hx : xSet.range ι) :
      (e.viaEmbedding ι) x = x

      Alias of Equiv.Perm.viaEmbedding_apply_of_notMem.

      noncomputable def Equiv.Perm.viaEmbeddingHom {α : Type u_1} {β : Type u_2} (ι : α β) :
      Perm α →* Perm β

      viaEmbedding as a group homomorphism

      Equations
        Instances For
          theorem Equiv.Perm.viaEmbeddingHom_apply {α : Type u_1} {β : Type u_2} (e : Perm α) (ι : α β) :